A local linear radial basis function neural network for financial time-series forecasting

被引:0
|
作者
Vahab Nekoukar
Mohammad Taghi Hamidi Beheshti
机构
[1] Iran University of Science and Technology,Biomedical Engineering Group, Electrical Engineering Department
[2] Tarbiat Modares University,Control Group, Electrical Engineering Department
来源
Applied Intelligence | 2010年 / 33卷
关键词
Local linear radial basis function neural network; Particle swarm optimization with hunter particles algorithm; Time-series prediction; Financial forecasting;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper a Local Linear Radial Basis Function Neural Network (LLRBFN) is presented. The difference between the proposed neural network and the conventional Radial Basis Function Neural Network (RBFN) is connection weights between the hidden layer and the output layer which are replaced by a local linear model in the LLRBFN. A modified Particle Swarm Optimization (PSO) with hunter particles is introduced for training the LLRBFN. The proposed methods have been applied for prediction of financial time-series and the result shows the feasibility and effectiveness.
引用
收藏
页码:352 / 356
页数:4
相关论文
共 50 条
  • [1] A local linear radial basis function neural network for financial time-series forecasting
    Nekoukar, Vahab
    Beheshti, Mohammad Taghi Hamidi
    [J]. APPLIED INTELLIGENCE, 2010, 33 (03) : 352 - 356
  • [2] Wind Speed Forecasting Using Multivariate Time-Series Radial Basis Function Neural Network
    Hamid, Nur
    Wibowo, Wahyu Catur
    [J]. 2018 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND INFORMATION SYSTEMS (ICACSIS), 2018, : 423 - 428
  • [3] An adaptive local linear optimized radial basis functional neural network model for financial time series prediction
    Patra, A.
    Das, S.
    Mishra, S. N.
    Senapati, M. R.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2017, 28 (01): : 101 - 110
  • [4] An adaptive local linear optimized radial basis functional neural network model for financial time series prediction
    A. Patra
    S. Das
    S. N. Mishra
    M. R. Senapati
    [J]. Neural Computing and Applications, 2017, 28 : 101 - 110
  • [5] Recurrent radial basis function network for time-series prediction
    Zemouri, R
    Racoceanu, D
    Zerhouni, N
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2003, 16 (5-6) : 453 - 463
  • [6] Marathon Grades Time Series Forecasting Based On Improved Radial Basis Function Neural Network
    Yu Gui-shen
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 39 (09): : 236 - 242
  • [7] An Adaptive Radial Basis Function Neural Network Glowworm Swarm Optimization for Time Series Forecasting
    Isimeto, Roselyn
    Sennaike, Oladipupo A.
    Alienyi, Daniel C.
    Uwadia, Charles O.
    [J]. ISMSI 2018: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, METAHEURISTICS & SWARM INTELLIGENCE, 2018, : 98 - 103
  • [8] A NEURAL NETWORK MODEL FOR TIME-SERIES FORECASTING
    Morariu, Nicolae
    Iancu, Eugenia
    Vlad, Sorin
    [J]. ROMANIAN JOURNAL OF ECONOMIC FORECASTING, 2009, 12 (04): : 213 - 223
  • [9] Modelling gene expression time-series with radial basis function neural networks
    Möller-Levet, CS
    Yin, HJ
    Cho, KH
    Wolkenhatier, O
    [J]. 2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 1191 - 1195
  • [10] Time-series prediction using a local linear wavelet neural network
    Chen, YH
    Yang, B
    Dong, JW
    [J]. NEUROCOMPUTING, 2006, 69 (4-6) : 449 - 465