Global radial solutions in classical Keller-Segel model of chemotaxis

被引:11
|
作者
Biler, Piotr [1 ]
Karch, Grzegorz [1 ]
Pilarczyk, Dominika [2 ]
机构
[1] Uniwersytet Wroclawski, Inst Matemat, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
[2] Wroclaw Univ Technol, Wydzial Matemat, Wybrzeze Wyspianskiego 37, Wroclaw, Poland
关键词
Chemotaxis; Global existence of solutions; SYMMETRIC-SOLUTIONS; NAVIER-STOKES; MORREY SPACES; BLOW-UP; 8-PI-PROBLEM; EXISTENCE; CRITERIA; SYSTEM;
D O I
10.1016/j.jde.2019.06.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the simplest parabolic-elliptic model of chemotaxis in the whole space in several dimensions. Criteria for the existence of radially symmetric global-in-time solutions in terms of suitable Morrey norms are derived. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:6352 / 6369
页数:18
相关论文
共 50 条
  • [31] Analytical solutions of the Keller-Segel chemotaxis model involving fractional operators without singular kernel
    V. F. Morales-Delgado
    J. F. Gómez-Aguilar
    Sunil Kumar
    M. A. Taneco-Hernández
    The European Physical Journal Plus, 133
  • [32] The nonsymmetric case of the Keller-Segel model in chemotaxis: some recent results
    Horstmann, D
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2001, 8 (04): : 399 - 423
  • [33] Instability in a generalized multi-species Keller-Segel chemotaxis model
    Fu, Shengmao
    Huang, Guangjian
    Adam, Badradeen
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (09) : 2280 - 2288
  • [34] The stability of the Keller-Segel model
    Solis, FJ
    Cortés, JC
    Cardenas, OJ
    MATHEMATICAL AND COMPUTER MODELLING, 2004, 39 (9-10) : 973 - 979
  • [35] The fractional Keller-Segel model
    Escudero, Carlos
    NONLINEARITY, 2006, 19 (12) : 2909 - 2918
  • [36] Coupled lattice Boltzmann method for generalized Keller-Segel chemotaxis model
    Yang, Xuguang
    Shi, Baochang
    Chai, Zhenhua
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (12) : 1653 - 1670
  • [37] The nonsymmetric case of the Keller-Segel model in chemotaxis: some recent results
    Dirk Horstmann
    Nonlinear Differential Equations and Applications NoDEA, 2001, 8 : 399 - 423
  • [38] Global bounded solutions to a Keller-Segel system with singular sensitivity
    Zhang, Qingshan
    APPLIED MATHEMATICS LETTERS, 2020, 107
  • [39] Beyond the Keller-Segel model
    Romanczuk, P.
    Erdmann, U.
    Engel, H.
    Schimansky-Geier, L.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2008, 157 : 61 - 77
  • [40] Stability of spiky solution of Keller-Segel's minimal chemotaxis model
    Chen, Xinfu
    Hao, Jianghao
    Wang, Xuefeng
    Wu, Yaping
    Zhang, Yajing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (09) : 3102 - 3134