Underwater Object Detection and Pose Estimation using Deep Learning

被引:11
|
作者
Jeon, MyungHwan [1 ]
Lee, Yeongjun [2 ]
Shin, Young-Sik
Jang, Hyesu
Kim, Ayoung [3 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Robot Program, Daejeon, South Korea
[2] KRISO, Daejeon, South Korea
[3] Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, Daejeon, South Korea
来源
IFAC PAPERSONLINE | 2019年 / 52卷 / 21期
关键词
D O I
10.1016/j.ifacol.2019.12.286
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an approach for making a dataset using a 3D CAD model for deep learning based underwater object detection and pose estimation. We also introduce a simple pose estimation network for underwater objects. In the experiment, we show that object detection and pose estimation networks trained via our synthetic dataset present a preliminary potential for deep learning based approaches in underwater. Lastly, we show that our synthetic image dataset provides meaningful performance for deep learning models in underwater environments. Copyright (C) 2019. The Authors. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:78 / 81
页数:4
相关论文
共 50 条
  • [41] Towards Industrial IoT-AR Systems using Deep Learning-Based Object Pose Estimation
    Sun, Yongbin
    Kantareddy, Sai Nithin Reddy
    Siegel, Joshua
    Armengol-Urpi, Alexandre
    Wu, Xiaoyu
    Wang, Hongyu
    Sarma, Sanjay
    [J]. 2019 IEEE 38TH INTERNATIONAL PERFORMANCE COMPUTING AND COMMUNICATIONS CONFERENCE (IPCCC), 2019,
  • [42] Pose recognition of underwater target based on deep learning
    Li X.
    Xu T.
    Ji S.
    [J]. Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2021, 42 (10): : 1503 - 1509
  • [43] Deep object 6-DoF pose estimation using instance segmentation
    Pujolle, Victor
    Hayashi, Eiji
    [J]. PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 241 - 244
  • [44] Advance Driving Assistance Systems: Object Detection and Distance Estimation Using Deep Learning
    Adz-Dzikri, Ahmad Alfi
    Virgono, Agus
    Dirgantara, Fussy Mentari
    [J]. 2021 8TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTERSCIENCE AND INFORMATICS (EECSI) 2021, 2021, : 381 - 386
  • [45] Fish Detection in Underwater Environments Using Deep Learning
    K. Suresh Kumar Patro
    Vinod Kumar Yadav
    V. S. Bharti
    Arun Sharma
    Arpita Sharma
    [J]. National Academy Science Letters, 2023, 46 : 407 - 412
  • [46] Fish Detection in Underwater Environments Using Deep Learning
    Patro, K. Suresh Kumar
    Yadav, Vinod Kumar
    Bharti, V. S.
    Sharma, Arun
    Sharma, Arpita
    [J]. NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2023, 46 (05): : 407 - 412
  • [47] Fast Uncertainty Quantification for Deep Object Pose Estimation
    Shi, Guanya
    Zhu, Yifeng
    Tremblay, Jonathan
    Birchfield, Stan
    Ramos, Fabio
    Anandkumar, Animashree
    Zhu, Yuke
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 5200 - 5207
  • [48] A systematic review and analysis of deep learning-based underwater object detection
    Xu, Shubo
    Zhang, Minghua
    Song, Wei
    Mei, Haibin
    He, Qi
    Liotta, Antonio
    [J]. NEUROCOMPUTING, 2023, 527 : 204 - 232
  • [49] Hovering control of UUV through underwater object detection based on deep learning
    Jin, Han-Sol
    Cho, Hyunjoon
    Jiafeng, Huang
    Lee, Ji-Hyeong
    Kim, Myung-Jun
    Jeong, Sang-Ki
    Ji, Dae-Hyeong
    Joo, Kibum
    Jung, Dongwook
    Choi, Hyeung-Sik
    [J]. OCEAN ENGINEERING, 2022, 253
  • [50] UWV-Yolox: A Deep Learning Model for Underwater Video Object Detection
    Pan, Haixia
    Lan, Jiahua
    Wang, Hongqiang
    Li, Yanan
    Zhang, Meng
    Ma, Mojie
    Zhang, Dongdong
    Zhao, Xiaoran
    [J]. SENSORS, 2023, 23 (10)