Deep object 6-DoF pose estimation using instance segmentation

被引:0
|
作者
Pujolle, Victor [1 ]
Hayashi, Eiji [1 ]
机构
[1] Kyushu Inst Technol, Comp Sci & Syst Engn, 680-4 Kawazu, Iizuka, Fukuoka 8200053, Japan
关键词
Pose estimation; deep-learning; keypoints localization; instance segmentation; virtual training; Factory automation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pose estimation algorithms' goal is to find the position and the orientation of an object in pace, given only an image. This task may be complex, especially in an uncontrolled environment with several parameters that can vary, like the object texture, background or the lightning conditions. Most algorithms performing pose estimation use deep learning methods. However, it may be difficult to create dataset to train such kind of models. In this paper we developed a new algorithm robust to a high variability of conditions using instance segmentation of the image and trainable on a virtual dataset. This system performs semantic keypoints based pose estimation without considering background, lighting or texture changes on the object.
引用
收藏
页码:241 / 244
页数:4
相关论文
共 50 条
  • [1] Object 6-DoF pose estimation using auxiliary learning
    Chen, Minjia
    Gai, Shaoyan
    Da, Feipeng
    Yu, Jian
    [J]. Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (06): : 901 - 914
  • [2] Instance-specific 6-DoF Object Pose Estimation from Minimal Annotations
    Singh, Rohan P.
    Kumagai, Iori
    Gabas, Antonio
    Benallegue, Mehdi
    Yoshiyasu, Yusuke
    Kanehiro, Fumio
    [J]. 2020 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII), 2020, : 109 - 114
  • [3] 6-DoF grasp pose estimation based on instance reconstruction
    Han, Huiyan
    Wang, Wenjun
    Han, Xie
    Yang, Xiaowen
    [J]. INTELLIGENT SERVICE ROBOTICS, 2024, 17 (02) : 251 - 264
  • [4] 6-DoF grasp pose estimation based on instance reconstruction
    Huiyan Han
    Wenjun Wang
    Xie Han
    Xiaowen Yang
    [J]. Intelligent Service Robotics, 2024, 17 : 251 - 264
  • [5] A probabilistic framework for object search with 6-DOF pose estimation
    Ma, Jeremy
    Chung, Timothy H.
    Burdick, Joel
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2011, 30 (10): : 1209 - 1228
  • [6] 6-DoF Pose Estimation for Axisymmetric Objects Using Deep Learning with Uncertainty
    Hashimoto, Shintaro
    Hirano, Daichi
    Ishihama, Naoki
    [J]. 2020 IEEE AEROSPACE CONFERENCE (AEROCONF 2020), 2020,
  • [7] NEMA: 6-DoF Pose Estimation Dataset for Deep Learning
    Roman, Philippe Perez de San
    Desbarats, Pascal
    Domenger, Jean-Philippe
    Buendia, Axel
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 4, 2022, : 682 - 690
  • [8] Deep Learning-Based 6-DoF Object Pose Estimation Considering Synthetic Dataset
    Zheng, Tianyu
    Zhang, Chunyan
    Zhang, Shengwen
    Wang, Yanyan
    [J]. SENSORS, 2023, 23 (24)
  • [9] RNNPose: 6-DoF Object Pose Estimation via Recurrent Correspondence Field Estimation and Pose Optimization
    Xu, Yan
    Lin, Kwan-Yee
    Zhang, Guofeng
    Wang, Xiaogang
    Li, Hongsheng
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (07) : 4669 - 4683
  • [10] 6-DoF Pose Estimation from Stereo LiDAR of Actual Machine using Deep Learning
    Hashimoto, Shintaro
    Nakajima, Yu
    Ishihama, Naoki
    [J]. 2023 IEEE AEROSPACE CONFERENCE, 2023,