Convergent perturbation theory for lattice models with fermions

被引:5
|
作者
Sazonov, V. K. [1 ,2 ]
机构
[1] Graz Univ, Dept Theoret Phys, Inst Phys, Univ Pl 5, A-8010 Graz, Austria
[2] St Petersburg State Univ, Dept Theoret Phys, Uljanovskaja 1, St Petersburg 198504, Petrodvorez, Russia
来源
基金
奥地利科学基金会;
关键词
Convergent perturbation theory; lattice models; bosonization; sign problem; QUANTUM-FIELD THEORY; APPROXIMATE EVALUATION; SERIES; INTEGRALS; BOSONIZATION;
D O I
10.1142/S0217751X1650072X
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The standard perturbation theory in QFT and lattice models leads to the asymptotic expansions. However, an appropriate regularization of the path or lattice integrals allows one to construct convergent series with an infinite radius of the convergence. In the earlier studies, this approach was applied to the purely bosonic systems. Here, using bosonization, we develop the convergent perturbation theory for a toy lattice model with interacting fermionic and bosonic fields.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [41] LATTICE PERTURBATION-THEORY ON THE COMPUTER
    DIRENZO, F
    MARCHESINI, G
    MARENZONI, P
    ONOFRI, E
    NUCLEAR PHYSICS B, 1994, : 795 - 798
  • [42] Perturbation theory for lattice cell calculations
    Courau, T
    Marleau, G
    NUCLEAR SCIENCE AND ENGINEERING, 2003, 143 (01) : 19 - 32
  • [43] Lattice regularization for chiral perturbation theory
    Lewis, R
    Ouimet, PPA
    PHYSICAL REVIEW D, 2001, 64 (03):
  • [44] VIABILITY OF LATTICE PERTURBATION-THEORY
    LEPAGE, GP
    MACKENZIE, PB
    PHYSICAL REVIEW D, 1993, 48 (05) : 2250 - 2264
  • [45] NONPERTURBATIVE LATTICE PERTURBATION-THEORY
    DIMM, W
    LEPAGE, GP
    MACKENZIE, PB
    NUCLEAR PHYSICS B, 1995, : 403 - 405
  • [46] Continuum methods in lattice perturbation theory
    Becker, T
    Melnikov, K
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2003, 116 : 407 - 411
  • [47] Lattice regularized chiral perturbation theory
    Borasoy, B
    Lewis, R
    Ouimet, PPA
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2004, 128 : 141 - 147
  • [48] Convergent series for lattice models with polynomial interactions
    Ivanov, Aleksandr S.
    Sazonov, Vasily K.
    NUCLEAR PHYSICS B, 2017, 914 : 43 - 61
  • [49] Numerical analysis of convergent perturbation expansions in quantum theory
    Kazakov, DI
    Onitchenko, AI
    THEORETICAL AND MATHEMATICAL PHYSICS, 1997, 110 (02) : 229 - 234
  • [50] Numerical analysis of convergent perturbation expansions in quantum theory
    D. I. Kazakov
    A. I. Onitchenko
    Theoretical and Mathematical Physics, 1997, 110 : 229 - 234