Convergent perturbation theory for lattice models with fermions

被引:5
|
作者
Sazonov, V. K. [1 ,2 ]
机构
[1] Graz Univ, Dept Theoret Phys, Inst Phys, Univ Pl 5, A-8010 Graz, Austria
[2] St Petersburg State Univ, Dept Theoret Phys, Uljanovskaja 1, St Petersburg 198504, Petrodvorez, Russia
来源
基金
奥地利科学基金会;
关键词
Convergent perturbation theory; lattice models; bosonization; sign problem; QUANTUM-FIELD THEORY; APPROXIMATE EVALUATION; SERIES; INTEGRALS; BOSONIZATION;
D O I
10.1142/S0217751X1650072X
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The standard perturbation theory in QFT and lattice models leads to the asymptotic expansions. However, an appropriate regularization of the path or lattice integrals allows one to construct convergent series with an infinite radius of the convergence. In the earlier studies, this approach was applied to the purely bosonic systems. Here, using bosonization, we develop the convergent perturbation theory for a toy lattice model with interacting fermionic and bosonic fields.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [21] Renormalisation of composite operators in lattice perturbation theory with clover fermions:: non-forward matrix elements
    Goeckeler, M.
    Horsley, R.
    Perlt, H.
    Rakow, P. E. L.
    Schaefer, A.
    Schierholz, G.
    Schiller, A.
    EUROPEAN PHYSICAL JOURNAL C, 2006, 48 (02): : 523 - 530
  • [22] Renormalisation of composite operators in lattice perturbation theory with clover fermions: non-forward matrix elements
    M. Göckeler
    R. Horsley
    H. Perlt
    P.E.L. Rakow
    A. Schäfer
    G. Schierholz
    A. Schiller
    The European Physical Journal C - Particles and Fields, 2006, 48 : 523 - 530
  • [23] Improving lattice perturbation theory
    Periwal, V
    PHYSICAL REVIEW D, 1996, 53 (05) : 2605 - 2609
  • [24] Convergent perturbation theory for studying phase transitions
    Nalimov, M. Yu.
    Ovsyannikov, A. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 204 (02) : 1033 - 1045
  • [25] Convergent perturbation theory for studying phase transitions
    M. Yu. Nalimov
    A. V. Ovsyannikov
    Theoretical and Mathematical Physics, 2020, 204 : 1033 - 1045
  • [26] CONVERGENT SERIES IN VARIATIONAL PERTURBATION-THEORY
    SISSAKIAN, AN
    SOLOVTSOV, IL
    SHEVCHENKO, OY
    PHYSICS LETTERS B, 1992, 297 (3-4) : 305 - 308
  • [27] Conformal Field Theory from Lattice Fermions
    Tobias J. Osborne
    Alexander Stottmeister
    Communications in Mathematical Physics, 2023, 398 : 219 - 289
  • [28] Interacting fermions in two dimensions: Beyond the perturbation theory
    Gangadharaiah, S
    Maslov, DL
    Chubukov, AV
    Glazman, LI
    PHYSICAL REVIEW LETTERS, 2005, 94 (15)
  • [29] PERTURBATION THEORY FOR AN INFINITE MEDIUM OF FERMIONS .2.
    KLEIN, A
    PHYSICAL REVIEW, 1961, 121 (04): : 950 - &
  • [30] Zooming in on heavy fermions in Kondo lattice models
    Danu, Bimla
    Liu, Zihong
    Assaad, Fakher F.
    Raczkowski, Marcin
    PHYSICAL REVIEW B, 2021, 104 (15)