Convergent perturbation theory for lattice models with fermions

被引:5
|
作者
Sazonov, V. K. [1 ,2 ]
机构
[1] Graz Univ, Dept Theoret Phys, Inst Phys, Univ Pl 5, A-8010 Graz, Austria
[2] St Petersburg State Univ, Dept Theoret Phys, Uljanovskaja 1, St Petersburg 198504, Petrodvorez, Russia
来源
基金
奥地利科学基金会;
关键词
Convergent perturbation theory; lattice models; bosonization; sign problem; QUANTUM-FIELD THEORY; APPROXIMATE EVALUATION; SERIES; INTEGRALS; BOSONIZATION;
D O I
10.1142/S0217751X1650072X
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The standard perturbation theory in QFT and lattice models leads to the asymptotic expansions. However, an appropriate regularization of the path or lattice integrals allows one to construct convergent series with an infinite radius of the convergence. In the earlier studies, this approach was applied to the purely bosonic systems. Here, using bosonization, we develop the convergent perturbation theory for a toy lattice model with interacting fermionic and bosonic fields.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [1] PERTURBATION-THEORY FOR UNDOUBLED LATTICE FERMIONS
    RABIN, JM
    PHYSICAL REVIEW D, 1981, 24 (12): : 3218 - 3236
  • [2] FINITE-ELEMENT LATTICE FERMIONS IN PERTURBATION-THEORY
    HANDS, S
    PHYSICS LETTERS B, 1987, 195 (03) : 448 - 452
  • [3] Chiral fermions on the lattice through gauge fixing: Perturbation theory
    Bock, W
    Golterman, MFL
    Shamir, Y
    PHYSICAL REVIEW D, 1998, 58 (03) : 0345011 - 03450112
  • [4] Efficient Perturbation Theory for Quantum Lattice Models
    Hafermann, H.
    Li, G.
    Rubtsov, A. N.
    Katsnelson, M. I.
    Lichtenstein, A. I.
    Monien, H.
    PHYSICAL REVIEW LETTERS, 2009, 102 (20)
  • [5] CONVERGENT SCHRODINGER PERTURBATION THEORY
    SPEISMAN, G
    PHYSICAL REVIEW, 1957, 107 (04): : 1180 - 1192
  • [6] Supersymmetric models for fermions on a lattice
    Ilieva, N
    Narnhofer, H
    Thirring, W
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2006, 54 (2-3): : 124 - 138
  • [7] PERTURBATION THEORY FOR THE INFINITE MEDIUM OF FERMIONS
    KLEIN, A
    PRANGE, R
    PHYSICAL REVIEW LETTERS, 1958, 1 (09) : 357 - 357
  • [8] PERTURBATION THEORY FOR AN INFINITE MEDIUM OF FERMIONS
    KLEIN, A
    PRANGE, R
    PHYSICAL REVIEW, 1958, 112 (03): : 994 - 1007
  • [9] Lattice perturbation theory
    Morningstar, CJ
    NUCLEAR PHYSICS B, 1996, : 92 - 99
  • [10] Lattice perturbation theory
    Capitani, S
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 382 (3-5): : 113 - 302