Statistical testing and power analysis for brain-wide association study

被引:18
|
作者
Gong, Weikang [1 ,2 ]
Wan, Lin [2 ,3 ]
Lu, Wenlian [4 ,5 ,6 ]
Ma, Liang [2 ,7 ]
Cheng, Fan [5 ,6 ]
Cheng, Wei [5 ]
Grunewald, Stefan [1 ,2 ]
Feng, Jianfeng [4 ,5 ,6 ,8 ]
机构
[1] Chinese Acad Sci, CAS MPG Partner Inst Computat Biol, Shanghai Inst Biol Sci, Key Lab Computat Biol, Shanghai 200031, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, LSC, NCMIS, Beijing 100190, Peoples R China
[4] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[5] Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai 200433, Peoples R China
[6] Fudan Univ, Shanghai Ctr Math Sci, Shanghai 200433, Peoples R China
[7] Chinese Acad Sci, Beijing Inst Genom, Beijing 100101, Peoples R China
[8] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金; 国家高技术研究发展计划(863计划);
关键词
Brain-wide association study; Random field theory; Functional connectivity; Statistical power; FALSE DISCOVERY RATE; ORBITOFRONTAL CORTEX; RANDOM-FIELD; SAMPLE-SIZE; FMRI; CONNECTIVITY; INFERENCE; FDR;
D O I
10.1016/j.media.2018.03.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The identification of connexel-wise associations, which involves examining functional connectivities between pairwise voxels across the whole brain, is both statistically and computationally challenging. Although such a connexel-wise methodology has recently been adopted by brain-wide association studies (BWAS) to identify connectivity changes in several mental disorders, such as schizophrenia, autism and depression, the multiple correction and power analysis methods designed specifically for connexel-wise analysis are still lacking. Therefore, we herein report the development of a rigorous statistical framework for connexel-wise significance testing based on the Gaussian random field theory. It includes controlling the family-wise error rate (FWER) of multiple hypothesis testings using topological inference methods, and calculating power and sample size for a connexel-wise study. Our theoretical framework can control the false-positive rate accurately, as validated empirically using two resting-state fMRI datasets. Compared with Bonferroni correction and false discovery rate (FDR), it can reduce false-positive rate and increase statistical power by appropriately utilizing the spatial information of fMRI data. Importantly, our method bypasses the need of non-parametric permutation to correct for multiple comparison, thus, it can efficiently tackle large datasets with high resolution fMRI images. The utility of our method is shown in a case-control study. Our approach can identify altered functional connectivities in a major depression disorder dataset, whereas existing methods fail. A software package is available at https://github.com/weikanggong/BWAS. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:15 / 30
页数:16
相关论文
共 50 条
  • [1] Study design features increase replicability in brain-wide association studies
    Kang, Kaidi
    Seidlitz, Jakob
    Bethlehem, Richard A. I.
    Xiong, Jiangmei
    Jones, Megan T.
    Mehta, Kahini
    Keller, Arielle S.
    Tao, Ran
    Randolph, Anita
    Larsen, Bart
    Tervo-Clemmens, Brenden
    Feczko, Eric
    Dominguez, Oscar Miranda
    Nelson, Steven M.
    Schildcrout, Jonathan
    Fair, Damien A.
    Satterthwaite, Theodore D.
    Alexander-Bloch, Aaron F.
    Vandekar, Simon
    NATURE, 2024, : 719 - 727
  • [2] A structured brain-wide and genome-wide association study using ADNI PET images
    Li, Yanming
    Nan, Bin
    Zhu, Ji
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (01): : 182 - 202
  • [3] Whole genome association study of brain-wide imaging phenotypes: A study of the ping cohort
    Wen, Canhong
    Mehta, Chintan M.
    Tan, Haizhu
    Zhang, Heping
    GENETIC EPIDEMIOLOGY, 2018, 42 (03) : 265 - 275
  • [4] Bias in data-driven replicability analysis of univariate brain-wide association studies
    Burns, Charles D. G.
    Fracasso, Alessio
    Rousselet, Guillaume A.
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [5] Reproducible brain-wide association studies require thousands of individuals
    Marek, Scott
    Tervo-Clemmens, Brenden
    Calabro, Finnegan J.
    Montez, David F.
    Kay, Benjamin P.
    Hatoum, Alexander S.
    Donohue, Meghan Rose
    Foran, William
    Miller, Ryland L.
    Hendrickson, Timothy J.
    Malone, Stephen M.
    Kandala, Sridhar
    Feczko, Eric
    Miranda-Dominguez, Oscar
    Graham, Alice M.
    Earl, Eric A.
    Perrone, Anders J.
    Cordova, Michaela
    Doyle, Olivia
    Moore, Lucille A.
    Conan, Gregory M.
    Uriarte, Johnny
    Snider, Kathy
    Lynch, Benjamin J.
    Wilgenbusch, James C.
    Pengo, Thomas
    Tam, Angela
    Chen, Jianzhong
    Newbold, Dillan J.
    Zheng, Annie
    Seider, Nicole A.
    Van, Andrew N.
    Metoki, Athanasia
    Chauvin, Roselyne J.
    Laumann, Timothy O.
    Greene, Deanna J.
    Petersen, Steven E.
    Garavan, Hugh
    Thompson, Wesley K.
    Nichols, Thomas E.
    Yeo, B. T. Thomas
    Barch, Deanna M.
    Luna, Beatriz
    Fair, Damien A.
    Dosenbach, Nico U. F.
    NATURE, 2022, 603 (7902) : 654 - +
  • [6] Reproducible brain-wide association studies require thousands of individuals
    Scott Marek
    Brenden Tervo-Clemmens
    Finnegan J. Calabro
    David F. Montez
    Benjamin P. Kay
    Alexander S. Hatoum
    Meghan Rose Donohue
    William Foran
    Ryland L. Miller
    Timothy J. Hendrickson
    Stephen M. Malone
    Sridhar Kandala
    Eric Feczko
    Oscar Miranda-Dominguez
    Alice M. Graham
    Eric A. Earl
    Anders J. Perrone
    Michaela Cordova
    Olivia Doyle
    Lucille A. Moore
    Gregory M. Conan
    Johnny Uriarte
    Kathy Snider
    Benjamin J. Lynch
    James C. Wilgenbusch
    Thomas Pengo
    Angela Tam
    Jianzhong Chen
    Dillan J. Newbold
    Annie Zheng
    Nicole A. Seider
    Andrew N. Van
    Athanasia Metoki
    Roselyne J. Chauvin
    Timothy O. Laumann
    Deanna J. Greene
    Steven E. Petersen
    Hugh Garavan
    Wesley K. Thompson
    Thomas E. Nichols
    B. T. Thomas Yeo
    Deanna M. Barch
    Beatriz Luna
    Damien A. Fair
    Nico U. F. Dosenbach
    Nature, 2022, 603 : 654 - 660
  • [7] Statistical analysis for genome-wide association study
    Ping Zeng
    Yang Zhao
    Cheng Qian
    Liwei Zhang
    Ruyang Zhang
    Jianwei Gou
    Jin Liu
    Liya Liu
    Feng Chen
    The Journal of Biomedical Research, 2015, 29 (04) : 285 - 297
  • [8] Statistical analysis for genome-wide association study
    Zeng, Ping
    Zhao, Yang
    Qian, Cheng
    Zhang, Liwei
    Zhang, Ruyang
    Gou, Jianwei
    Liu, Jin
    Liu, Liya
    Chen, Feng
    JOURNAL OF BIOMEDICAL RESEARCH, 2015, 29 (04): : 285 - 297
  • [9] Optogenetic fMRI for Brain-Wide Circuit Analysis of Sensory Processing
    Lee, Jeong-Yun
    You, Taeyi
    Woo, Choong-Wan
    Kim, Seong-Gi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (20)
  • [10] Brain-wide imaging of neurons in action
    Tatro, Erick T.
    FRONTIERS IN NEURAL CIRCUITS, 2014, 8