Statistical testing and power analysis for brain-wide association study

被引:18
|
作者
Gong, Weikang [1 ,2 ]
Wan, Lin [2 ,3 ]
Lu, Wenlian [4 ,5 ,6 ]
Ma, Liang [2 ,7 ]
Cheng, Fan [5 ,6 ]
Cheng, Wei [5 ]
Grunewald, Stefan [1 ,2 ]
Feng, Jianfeng [4 ,5 ,6 ,8 ]
机构
[1] Chinese Acad Sci, CAS MPG Partner Inst Computat Biol, Shanghai Inst Biol Sci, Key Lab Computat Biol, Shanghai 200031, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, LSC, NCMIS, Beijing 100190, Peoples R China
[4] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[5] Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai 200433, Peoples R China
[6] Fudan Univ, Shanghai Ctr Math Sci, Shanghai 200433, Peoples R China
[7] Chinese Acad Sci, Beijing Inst Genom, Beijing 100101, Peoples R China
[8] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金; 国家高技术研究发展计划(863计划);
关键词
Brain-wide association study; Random field theory; Functional connectivity; Statistical power; FALSE DISCOVERY RATE; ORBITOFRONTAL CORTEX; RANDOM-FIELD; SAMPLE-SIZE; FMRI; CONNECTIVITY; INFERENCE; FDR;
D O I
10.1016/j.media.2018.03.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The identification of connexel-wise associations, which involves examining functional connectivities between pairwise voxels across the whole brain, is both statistically and computationally challenging. Although such a connexel-wise methodology has recently been adopted by brain-wide association studies (BWAS) to identify connectivity changes in several mental disorders, such as schizophrenia, autism and depression, the multiple correction and power analysis methods designed specifically for connexel-wise analysis are still lacking. Therefore, we herein report the development of a rigorous statistical framework for connexel-wise significance testing based on the Gaussian random field theory. It includes controlling the family-wise error rate (FWER) of multiple hypothesis testings using topological inference methods, and calculating power and sample size for a connexel-wise study. Our theoretical framework can control the false-positive rate accurately, as validated empirically using two resting-state fMRI datasets. Compared with Bonferroni correction and false discovery rate (FDR), it can reduce false-positive rate and increase statistical power by appropriately utilizing the spatial information of fMRI data. Importantly, our method bypasses the need of non-parametric permutation to correct for multiple comparison, thus, it can efficiently tackle large datasets with high resolution fMRI images. The utility of our method is shown in a case-control study. Our approach can identify altered functional connectivities in a major depression disorder dataset, whereas existing methods fail. A software package is available at https://github.com/weikanggong/BWAS. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:15 / 30
页数:16
相关论文
共 50 条
  • [41] Brain-wide neuronal circuit connectome of human glioblastoma
    Sun, Yusha
    Wang, Xin
    Zhang, Daniel Y.
    Zhang, Zhijian
    Bhattarai, Janardhan P.
    Wang, Yingqi
    Park, Kristen H.
    Dong, Weifan
    Hung, Yun-Fen
    Yang, Qian
    Zhang, Feng
    Rajamani, Keerthi
    Mu, Shang
    Kennedy, Benjamin C.
    Hong, Yan
    Galanaugh, Jamie
    Sambangi, Abhijeet
    Kim, Sang Hoon
    Wheeler, Garrett
    Goncalves, Tiago
    Wang, Qing
    Geschwind, Daniel H.
    Kawaguchi, Riki
    Viaene, Angela N.
    Helbig, Ingo
    Kessler, Sudha K.
    Hoke, Ahmet
    Wang, Huadong
    Xu, Fuqiang
    Binder, Zev A.
    Isaac Chen, H.
    Pai, Emily Ling-Lin
    Stone, Sara
    Nasrallah, MacLean P.
    Christian, Kimberly M.
    Fuccillo, Marc
    Toni, Nicolas
    Wu, Zhuhao
    Cheng, Hwai-Jong
    O'Rourke, Donald M.
    Ma, Minghong
    Ming, Guo-li
    Song, Hongjun
    NATURE, 2025, : 222 - 231
  • [42] Brain-wide gain modulation: the rich get richer
    Tobias H Donner
    Sander Nieuwenhuis
    Nature Neuroscience, 2013, 16 : 989 - 990
  • [43] A platform for brain-wide imaging and reconstruction of individual neurons
    Economon, Michael N.
    Clack, Nathan G.
    Levis, Luke D.
    Gerfen, Charles R.
    Svoboda, Karel
    Myers, Eugene W.
    Chandrashekar, Jayaram
    ELIFE, 2016, 5
  • [44] The landscape of regulatory genes in brain-wide neuronal phenotypes of a vertebrate brain
    Zhang, Hui
    Wang, Haifang
    Shen, Xiaoyu
    Jia, Xinling
    Yu, Shuguang
    Qiu, Xiaoying
    Wang, Yufan
    Du, Jiulin
    Yan, Jun
    He, Jie
    ELIFE, 2021, 10
  • [45] Left-Right Brain-Wide Asymmetry of Neuroanatomy in the Mouse Brain
    Silberfeld, Andrew
    Roe, James M.
    Ellegood, Jacob
    Lerch, Jason P.
    Qiu, Lily
    Kim, Yongsoo
    Lee, Jong Gwan
    Hopkins, William D.
    Grandjean, Joanes
    Ou, Yangming
    Pourquie, Olivier
    NEUROIMAGE, 2025, 307
  • [46] Brain-Wide Mapping of Water Flow Perception in Zebrafish
    Vanwalleghem, Gilles
    Schuster, Kevin
    Taylor, Michael A.
    Favre-Bulle, Itia A.
    Scott, Ethan K.
    JOURNAL OF NEUROSCIENCE, 2020, 40 (21): : 4130 - 4144
  • [47] Coordination of Brain-Wide Activity Dynamics by Dopaminergic Neurons
    Heather K Decot
    Vijay M K Namboodiri
    Wei Gao
    Jenna A McHenry
    Joshua H Jennings
    Sung-Ho Lee
    Pranish A Kantak
    Yu-Chieh Jill Kao
    Manasmita Das
    Ilana B Witten
    Karl Deisseroth
    Yen-Yu Ian Shih
    Garret D Stuber
    Neuropsychopharmacology, 2017, 42 : 615 - 627
  • [48] Coordination of Brain-Wide Activity Dynamics by Dopaminergic Neurons
    Decot, Heather K.
    Namboodiri, Vijay M. K.
    Gao, Wei
    McHenry, Jenna A.
    Jennings, Joshua H.
    Lee, Sung-Ho
    Kantak, Pranish A.
    Kao, Yu-Chieh Jill
    Das, Manasmita
    Witten, Ilana B.
    Deisseroth, Karl
    Shih, Yen-Yu Ian
    Stuber, Garret D.
    NEUROPSYCHOPHARMACOLOGY, 2017, 42 (03) : 615 - 627
  • [49] Practicing cooperative skills shapes brain-wide networks
    Jiang, Haozhou
    Sliwa, Julia
    TRENDS IN COGNITIVE SCIENCES, 2024, 28 (07) : 590 - 592
  • [50] Development of brain-wide connectivity architecture in awake rats
    Ma, Zilu
    Ma, Yuncong
    Zhang, Nanyin
    NEUROIMAGE, 2018, 176 : 380 - 389