Bias in data-driven replicability analysis of univariate brain-wide association studies

被引:0
|
作者
Burns, Charles D. G. [1 ]
Fracasso, Alessio [1 ]
Rousselet, Guillaume A. [1 ]
机构
[1] Univ Glasgow, Sch Psychol & Neurosci, Glasgow G12 8QB, Scotland
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
基金
英国生物技术与生命科学研究理事会;
关键词
STATISTICAL POWER; FMRI;
D O I
10.1038/s41598-025-89257-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent studies have used big neuroimaging datasets to answer an important question: how many subjects are required for reproducible brain-wide association studies? These data-driven approaches could be considered a framework for testing the reproducibility of several neuroimaging models and measures. Here we test part of this framework, namely estimates of statistical errors of univariate brain-behaviour associations obtained from resampling large datasets with replacement. We demonstrate that reported estimates of statistical errors are largely a consequence of bias introduced by random effects when sampling with replacement close to the full sample size. We show that future meta-analyses can largely avoid these biases by only resampling up to 10% of the full sample size. We discuss implications that reproducing mass-univariate association studies requires tens-of-thousands of participants, urging researchers to adopt other methodological approaches.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Study design features increase replicability in brain-wide association studies
    Kang, Kaidi
    Seidlitz, Jakob
    Bethlehem, Richard A. I.
    Xiong, Jiangmei
    Jones, Megan T.
    Mehta, Kahini
    Keller, Arielle S.
    Tao, Ran
    Randolph, Anita
    Larsen, Bart
    Tervo-Clemmens, Brenden
    Feczko, Eric
    Dominguez, Oscar Miranda
    Nelson, Steven M.
    Schildcrout, Jonathan
    Fair, Damien A.
    Satterthwaite, Theodore D.
    Alexander-Bloch, Aaron F.
    Vandekar, Simon
    NATURE, 2024, : 719 - 727
  • [2] A Data-Driven Approach to Predict and Classify Epileptic Seizures from Brain-Wide Calcium Imaging Video Data
    Zheng, Jingyi
    Hsieh, Fushing
    Ge, Linqiang
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 17 (06) : 1858 - 1870
  • [3] REPLICABILITY ANALYSIS FOR GENOME-WIDE ASSOCIATION STUDIES
    Heller, Ruth
    Yekutieli, Daniel
    ANNALS OF APPLIED STATISTICS, 2014, 8 (01): : 481 - 498
  • [4] Reproducible brain-wide association studies require thousands of individuals
    Marek, Scott
    Tervo-Clemmens, Brenden
    Calabro, Finnegan J.
    Montez, David F.
    Kay, Benjamin P.
    Hatoum, Alexander S.
    Donohue, Meghan Rose
    Foran, William
    Miller, Ryland L.
    Hendrickson, Timothy J.
    Malone, Stephen M.
    Kandala, Sridhar
    Feczko, Eric
    Miranda-Dominguez, Oscar
    Graham, Alice M.
    Earl, Eric A.
    Perrone, Anders J.
    Cordova, Michaela
    Doyle, Olivia
    Moore, Lucille A.
    Conan, Gregory M.
    Uriarte, Johnny
    Snider, Kathy
    Lynch, Benjamin J.
    Wilgenbusch, James C.
    Pengo, Thomas
    Tam, Angela
    Chen, Jianzhong
    Newbold, Dillan J.
    Zheng, Annie
    Seider, Nicole A.
    Van, Andrew N.
    Metoki, Athanasia
    Chauvin, Roselyne J.
    Laumann, Timothy O.
    Greene, Deanna J.
    Petersen, Steven E.
    Garavan, Hugh
    Thompson, Wesley K.
    Nichols, Thomas E.
    Yeo, B. T. Thomas
    Barch, Deanna M.
    Luna, Beatriz
    Fair, Damien A.
    Dosenbach, Nico U. F.
    NATURE, 2022, 603 (7902) : 654 - +
  • [5] Reproducible brain-wide association studies require thousands of individuals
    Scott Marek
    Brenden Tervo-Clemmens
    Finnegan J. Calabro
    David F. Montez
    Benjamin P. Kay
    Alexander S. Hatoum
    Meghan Rose Donohue
    William Foran
    Ryland L. Miller
    Timothy J. Hendrickson
    Stephen M. Malone
    Sridhar Kandala
    Eric Feczko
    Oscar Miranda-Dominguez
    Alice M. Graham
    Eric A. Earl
    Anders J. Perrone
    Michaela Cordova
    Olivia Doyle
    Lucille A. Moore
    Gregory M. Conan
    Johnny Uriarte
    Kathy Snider
    Benjamin J. Lynch
    James C. Wilgenbusch
    Thomas Pengo
    Angela Tam
    Jianzhong Chen
    Dillan J. Newbold
    Annie Zheng
    Nicole A. Seider
    Andrew N. Van
    Athanasia Metoki
    Roselyne J. Chauvin
    Timothy O. Laumann
    Deanna J. Greene
    Steven E. Petersen
    Hugh Garavan
    Wesley K. Thompson
    Thomas E. Nichols
    B. T. Thomas Yeo
    Deanna M. Barch
    Beatriz Luna
    Damien A. Fair
    Nico U. F. Dosenbach
    Nature, 2022, 603 : 654 - 660
  • [6] Statistical testing and power analysis for brain-wide association study
    Gong, Weikang
    Wan, Lin
    Lu, Wenlian
    Ma, Liang
    Cheng, Fan
    Cheng, Wei
    Grunewald, Stefan
    Feng, Jianfeng
    MEDICAL IMAGE ANALYSIS, 2018, 47 : 15 - 30
  • [7] repfdr: a tool for replicability analysis for genome-wide association studies
    Heller, Ruth
    Yaacoby, Shay
    Yekutieli, Daniel
    BIOINFORMATICS, 2014, 30 (20) : 2971 - 2972
  • [8] Beyond the AJR: Sampling Variability Impacts Reproducibility in Brain-Wide Association Studies
    Smith, Jeremy L.
    Allen, Jason W.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2023, 220 (01) : 149 - 149
  • [9] Publisher Correction: Reproducible brain-wide association studies require thousands of individuals
    Scott Marek
    Brenden Tervo-Clemmens
    Finnegan J. Calabro
    David F. Montez
    Benjamin P. Kay
    Alexander S. Hatoum
    Meghan Rose Donohue
    William Foran
    Ryland L. Miller
    Timothy J. Hendrickson
    Stephen M. Malone
    Sridhar Kandala
    Eric Feczko
    Oscar Miranda-Dominguez
    Alice M. Graham
    Eric A. Earl
    Anders J. Perrone
    Michaela Cordova
    Olivia Doyle
    Lucille A. Moore
    Gregory M. Conan
    Johnny Uriarte
    Kathy Snider
    Benjamin J. Lynch
    James C. Wilgenbusch
    Thomas Pengo
    Angela Tam
    Jianzhong Chen
    Dillan J. Newbold
    Annie Zheng
    Nicole A. Seider
    Andrew N. Van
    Athanasia Metoki
    Roselyne J. Chauvin
    Timothy O. Laumann
    Deanna J. Greene
    Steven E. Petersen
    Hugh Garavan
    Wesley K. Thompson
    Thomas E. Nichols
    B. T. Thomas Yeo
    Deanna M. Barch
    Beatriz Luna
    Damien A. Fair
    Nico U. F. Dosenbach
    Nature, 2022, 605 : E11 - E11
  • [10] Brain-wide network analysis of resting-state neuromagnetic data
    Kida, Tetsuo
    Tanaka, Emi
    Kakigi, Ryusuke
    Inui, Koji
    HUMAN BRAIN MAPPING, 2023, 44 (09) : 3519 - 3540