Bias in data-driven replicability analysis of univariate brain-wide association studies

被引:0
|
作者
Burns, Charles D. G. [1 ]
Fracasso, Alessio [1 ]
Rousselet, Guillaume A. [1 ]
机构
[1] Univ Glasgow, Sch Psychol & Neurosci, Glasgow G12 8QB, Scotland
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
基金
英国生物技术与生命科学研究理事会;
关键词
STATISTICAL POWER; FMRI;
D O I
10.1038/s41598-025-89257-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent studies have used big neuroimaging datasets to answer an important question: how many subjects are required for reproducible brain-wide association studies? These data-driven approaches could be considered a framework for testing the reproducibility of several neuroimaging models and measures. Here we test part of this framework, namely estimates of statistical errors of univariate brain-behaviour associations obtained from resampling large datasets with replacement. We demonstrate that reported estimates of statistical errors are largely a consequence of bias introduced by random effects when sampling with replacement close to the full sample size. We show that future meta-analyses can largely avoid these biases by only resampling up to 10% of the full sample size. We discuss implications that reproducing mass-univariate association studies requires tens-of-thousands of participants, urging researchers to adopt other methodological approaches.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Replicability and Robustness of Genome-Wide-Association Studies for Behavioral Traits
    Rietveld, Cornelius A.
    Conley, Dalton
    Eriksson, Nicholas
    Esko, Tonu
    Medland, Sarah E.
    Vinkhuyzen, Anna A. E.
    Yang, Jian
    Boardman, Jason D.
    Chabris, Christopher F.
    Dawes, Christopher T.
    Domingue, Benjamin W.
    Hinds, David A.
    Johannesson, Magnus
    Kiefer, Amy K.
    Laibson, David
    Magnusson, Patrik K. E.
    Mountain, Joanna L.
    Oskarsson, Sven
    Rostapshova, Olga
    Teumer, Alexander
    Tung, Joyce Y.
    Visscher, Peter M.
    Benjamin, Daniel J.
    Cesarini, David
    Koellinger, Philipp D.
    PSYCHOLOGICAL SCIENCE, 2014, 25 (11) : 1975 - 1986
  • [22] A data-driven brain network modeling for epileptogenic spread analysis
    Liu, Xiaotong
    Yu, Ying
    Han, Fang
    Zhou, Jian
    Liu, Zhao
    Luan, Guoming
    Wang, Qingyun
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 105
  • [23] A Tool for Brain-Wide Quantitative Analysis of Molecular Data upon Projection into a Planar View of Choice
    Vreysen, Samme
    Scheyltjens, Isabelle
    Laramee, Marie-Eve
    Arckens, Lutgarde
    FRONTIERS IN NEUROANATOMY, 2017, 11
  • [24] A structured brain-wide and genome-wide association study using ADNI PET images
    Li, Yanming
    Nan, Bin
    Zhu, Ji
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (01): : 182 - 202
  • [25] Data-driven, connectome-wide analysis identifies psychosis-specific brain correlates of fear and anxiety
    Feola, Brandee
    Beermann, Adam
    Manzanarez Felix, Karlos
    Coleman, Michael
    Bouix, Sylvain
    Holt, Daphne J.
    Lewandowski, Kathryn E.
    Ongur, Dost
    Breier, Alan
    Shenton, Martha E.
    Heckers, Stephan
    Brady, Roscoe O., Jr.
    Blackford, Jennifer Urbano
    Ward, Heather Burrell
    MOLECULAR PSYCHIATRY, 2024, 29 (09) : 2601 - 2610
  • [26] A practical guide to linking brain-wide gene expression and neuroimaging data
    Arnatkeviciute, Aurina
    Fulcher, Ben D.
    Fornito, Alex
    NEUROIMAGE, 2019, 189 : 353 - 367
  • [27] Optogenetic fMRI for Brain-Wide Circuit Analysis of Sensory Processing
    Lee, Jeong-Yun
    You, Taeyi
    Woo, Choong-Wan
    Kim, Seong-Gi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (20)
  • [28] Electoral Studies and data-driven analysis: A Victorian case study
    Reid, Ben
    AUSTRALASIAN PARLIAMENTARY REVIEW, 2024, 39 (01): : 87 - 111
  • [29] A bias-variance perspective of data-driven control
    Colin, Kevin
    Ju, Yue
    Bombois, Xavier
    Rojas, Cristian R.
    Hjalmarsson, Hakan
    IFAC PAPERSONLINE, 2024, 58 (15): : 85 - 90
  • [30] Algorithmic bias in data-driven innovation in the age of AI
    Akter, Shahriar
    McCarthy, Grace
    Sajib, Shahriar
    Michael, Katina
    Dwivedi, Yogesh K.
    D'Ambra, John
    Shen, K. N.
    INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT, 2021, 60 (60)