On the edge irregular reflexive labeling of corona product of graphs with path

被引:4
|
作者
Yoong, Kooi-Kuan [1 ]
Hasni, Roslan [1 ]
Irfan, Muhammad [2 ]
Taraweh, Ibrahim [3 ]
Ahmad, Ali [4 ]
Lee, Sin-Min [5 ]
机构
[1] Univ Malaysia Terengganu, Fac Ocean Engn Technol & Informat, Kuala Nerus, Malaysia
[2] Univ Okara, Dept Math, Okara, Pakistan
[3] Khalid Ibn Al Walid Sch, Math, Al Karak, Jordan
[4] Coll Comp Sci & Informat Technol, Jazan, Saudi Arabia
[5] San Jose State Univ, Dept Comp Sci, San Jose, CA 95192 USA
关键词
Edge irregular reflexive labeling; reflexive edge strength; corona product; path; complete graph; STRENGTH;
D O I
10.1080/09728600.2021.1931555
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a total k-labeling phi of a graph G as a combination of an edge labeling phi(e):E(G)->{1,2,...,k(e)} and a vertex labeling phi(v):V(G)->{0,2,...,2k(v)}, such that phi(x) = phi(v)(x) if x is an element of V(G) and phi(x) = phi(e)(x) if x is an element of E (G), where k = max {k(e),2k(v)}. The total k-labeling phi is called an edge irregular reflexive k-labeling of G if every two different edges has distinct edge weights, where the edge weight is defined as the summation of the edge label itself and its two vertex labels. Thus, the smallest value of k for which the graph G has the edge irregular reflexive k-labeling is called the reflexive edge strength of G. In this paper, we study the edge irregular reflexive labeling of corona product of two paths and corona product of a path with isolated vertices. We determine the reflexive edge strength for these graphs.
引用
收藏
页码:53 / 59
页数:7
相关论文
共 50 条
  • [31] On P2 ◊ Pn-supermagic labeling of edge corona product of cycle and path graph
    Yulianto, R.
    Martini, Titin S.
    1ST INTERNATIONAL CONFERENCE OF COMBINATORICS, GRAPH THEORY, AND NETWORK TOPOLOGY, 2018, 1008
  • [32] On the partition dimension of edge corona product of path and cycle
    Alfarisi, R.
    Dafik
    Adawiyah, R.
    Prihandini, R. M.
    Albirri, E. R.
    Agustin, I. H.
    2ND INTERNATIONAL CONFERENCE OF COMBINATORICS, GRAPH THEORY, AND NETWORK TOPOLOGY, 2019,
  • [33] On Edge Irregular Total Labeling of Categorical Product of Two Cycles
    Ahmad, Ali
    Baca, Martin
    Siddiqui, Muhammad Kamran
    THEORY OF COMPUTING SYSTEMS, 2014, 54 (01) : 1 - 12
  • [34] On Edge Irregular Total Labeling of Categorical Product of Two Cycles
    Ali Ahmad
    Martin Bača
    Muhammad Kamran Siddiqui
    Theory of Computing Systems, 2014, 54 : 1 - 12
  • [35] EDGE IRREGULAR REFLEXIVE LABELING ON DOUBLE BROOM GRAPH AND COMB OF CYCLE AND STAR GRAPH
    Vinatih, A. R. S.
    Indriati, B. D.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2025, 15 (03): : 748 - 761
  • [36] Hitting Times of Random Walks on Edge Corona Product Graphs
    Zhu, Mingzhe
    Xu, Wanyue
    Li, Wei
    Zhang, Zhongzhi
    Kan, Haibin
    COMPUTER JOURNAL, 2024, 67 (02): : 485 - 497
  • [37] THE HYPER EDGE-WIENER INDEX OF CORONA PRODUCT OF GRAPHS
    Soltani, A.
    Iranmanesh, A.
    TRANSACTIONS ON COMBINATORICS, 2015, 4 (03) : 1 - 9
  • [38] The rainbow vertex connection number of edge corona product graphs
    Fauziah, D. A.
    Dafik
    Agustin, I. H.
    Alfarisi, R.
    FIRST INTERNATIONAL CONFERENCE ON ENVIRONMENTAL GEOGRAPHY AND GEOGRAPHY EDUCATION (ICEGE), 2019, 243
  • [39] Cordial Labeling of Corona Product of Paths and Fourth Order of Lemniscate Graphs
    Abd El-hay, Atef
    Alsatami, Khalid A.
    Elrokh, Ashraf
    Rabie, Aya
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2025, 18 (01):
  • [40] Vertex irregular reflexive labeling of prisms and wheels
    Tanna, Dushyant
    Ryan, Joe
    Semanicova-Fenovcikova, Andrea
    Baca, Martin
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 51 - 59