On the edge irregular reflexive labeling of corona product of graphs with path

被引:4
|
作者
Yoong, Kooi-Kuan [1 ]
Hasni, Roslan [1 ]
Irfan, Muhammad [2 ]
Taraweh, Ibrahim [3 ]
Ahmad, Ali [4 ]
Lee, Sin-Min [5 ]
机构
[1] Univ Malaysia Terengganu, Fac Ocean Engn Technol & Informat, Kuala Nerus, Malaysia
[2] Univ Okara, Dept Math, Okara, Pakistan
[3] Khalid Ibn Al Walid Sch, Math, Al Karak, Jordan
[4] Coll Comp Sci & Informat Technol, Jazan, Saudi Arabia
[5] San Jose State Univ, Dept Comp Sci, San Jose, CA 95192 USA
关键词
Edge irregular reflexive labeling; reflexive edge strength; corona product; path; complete graph; STRENGTH;
D O I
10.1080/09728600.2021.1931555
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a total k-labeling phi of a graph G as a combination of an edge labeling phi(e):E(G)->{1,2,...,k(e)} and a vertex labeling phi(v):V(G)->{0,2,...,2k(v)}, such that phi(x) = phi(v)(x) if x is an element of V(G) and phi(x) = phi(e)(x) if x is an element of E (G), where k = max {k(e),2k(v)}. The total k-labeling phi is called an edge irregular reflexive k-labeling of G if every two different edges has distinct edge weights, where the edge weight is defined as the summation of the edge label itself and its two vertex labels. Thus, the smallest value of k for which the graph G has the edge irregular reflexive k-labeling is called the reflexive edge strength of G. In this paper, we study the edge irregular reflexive labeling of corona product of two paths and corona product of a path with isolated vertices. We determine the reflexive edge strength for these graphs.
引用
收藏
页码:53 / 59
页数:7
相关论文
共 50 条
  • [21] Edge Irregular Reflexive Labeling for Disjoint Union of Generalized Petersen Graph
    Guirao, Juan L. G.
    Ahmad, Sarfraz
    Siddiqui, Muhammad Kamran
    Ibrahim, Muhammad
    MATHEMATICS, 2018, 6 (12):
  • [22] Cordial labeling of corona product of paths and lemniscate graphs
    Hefnawy, A.
    Elmshtaye, Y.
    ARS COMBINATORIA, 2020, 150 : 63 - 76
  • [23] Cordial labeling of corona product of paths and lemniscate graphs
    Hefnawy, A.
    Elmshtaye, Y.
    ARS COMBINATORIA, 2020, 149 : 69 - 82
  • [24] EDGE PRODUCT CORDIAL LABELING OF SOME GRAPHS
    Prajapati, U. M.
    Patel, N. B.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2019, 18 (01) : 69 - 76
  • [25] Irregular colorings of certain classes of corona product and Sierpinski graphs
    Iyer, Radha R.
    Somamsundaram, K.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (01): : 97 - 105
  • [26] On the vertex irregular reflexive labeling of several regular and regular-like graphs
    Agustin, Ika H.
    Susilowati, Liliek
    Dafik
    Cangul, Ismail N.
    Mohanapriya, N.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (05): : 1457 - 1473
  • [27] On The Edge Irregularity Strength Of Corona Product Of Graphs With Paths
    Tarawneh, Ibrahim
    Hasni, Roslan
    Ahmad, Ali
    APPLIED MATHEMATICS E-NOTES, 2016, 16 : 80 - 87
  • [28] LACEABILITY PROPERTIES IN EDGE TOLERANT CORONA PRODUCT GRAPHS
    Gomathi, P.
    Murali, R.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (03): : 734 - +
  • [29] An application on edge irregular reflexive labeling for mt-graph of cycle graph
    Asif, Muhammad Amir
    Ismail, Rashad
    Razaq, Ayesha
    Al-Sabri, Esmail Hassan Abdullatif
    Mateen, Muhammad Haris
    Ali, Shahbaz
    AIMS MATHEMATICS, 2025, 10 (01): : 1300 - 1321
  • [30] On the edge irregularity strength of corona product of graphs with cycle
    Tarawneh, I.
    Hasni, R.
    Ahmad, A.
    Lau, G. C.
    Lee, S. M.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (06)