Stability and Electron Affinities of Negatively Charged Aluminium Clusters: A Computational Study

被引:0
|
作者
Goldberg, Alexander [2 ]
Oliva, Josep M. [1 ]
Walsh, Noelle [3 ]
Martinez, Franklin [3 ]
Marx, Gerrit [3 ]
Schweikhard, Lutz [3 ]
Fernandez-Barbero, Antonio [4 ]
机构
[1] CSIC, Inst Quim Fis Rocasolano, E-28006 Madrid, Spain
[2] Accelrys Inc, San Diego, CA 92121 USA
[3] Ernst Moritz Arndt Univ Greifswald, Inst Phys, D-17487 Greifswald, Germany
[4] Univ Almeria, Grp Complex Fluid Phys, Almeria 04120, Spain
关键词
Clusters; Aluminium; ClusterTrap; Penning Trap; DFT; Charged Conducting-Sphere Model; Coulomb Barrier; Tunneling; GENERALIZED GRADIENT APPROXIMATION; PHOTOELECTRON-SPECTROSCOPY; METAL-CLUSTERS; IONIZATION; MOLECULES; POTENTIALS; PARTICLES; SOLIDS; ENERGY; MODEL;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A computational study on the stability of neutral, singly and doubly negatively charged aluminium clusters Al-n(z), with n = {13, 18, 23, 39, 55}, and z = {0, -1, -2} is presented. Estimates of electron affinities (EA) were computed with (i) all-electron quantum-mechanical calculations with full geometry optimization on Alnz, with n = {13, 18, 23, 39, 55}, and z = {0, -1, -2), using the Perdew-Burke-Ernzerhof (PBE) gradient-corrected functional within Density Functional Theory (DFT) and (ii) Charged Conducting-Sphere Model with and without Coulomb barrier and tunnelling corrections. If a positive value for the second electron affinity of the cluster is considered to be the sole criterion for the production and experimental observation of dianionic aluminium clusters, then the predicted minimum cluster size (i.e. the number of atoms) is n similar to 23 and n similar to 32 from the all-electron computations and the charged conducting-sphere model, respectively.
引用
收藏
页码:285 / 292
页数:8
相关论文
共 50 条
  • [41] CALCULATIONS OF THE IONIZATION THRESHOLDS AND ELECTRON-AFFINITIES OF THE NEUTRAL, POSITIVELY AND NEGATIVELY CHARGED C-60 FOLLENE-60
    ROSEN, A
    WASTBERG, B
    JOURNAL OF CHEMICAL PHYSICS, 1989, 90 (04): : 2525 - 2526
  • [42] Structural evolution and stabilities of negatively charged lead telluride clusters
    Mulugeta, Yonas
    Woldeghebriel, Hagos
    JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY, 2014, 13 (05):
  • [43] Computational study on the negative electron affinities of NO2-•(H2O)n clusters (n=0-30)
    Ejsing, Anne Marie
    Nielsen, Brondsted
    JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (15):
  • [44] GEOMETRIES AND ELECTRONIC-STRUCTURES OF NEGATIVELY CHARGED CARBON CLUSTERS
    RAY, AK
    RAO, BK
    ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS, 1995, 33 (03): : 197 - 201
  • [45] Properties of Negatively Charged Ruthenium Clusters in Molten Sodium Chloride
    Rahimi, Nazanin
    McFarland, Eric W.
    Metiu, Horia
    Kristoffersen, Henrik H.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (26): : 16179 - 16185
  • [46] MASS-SPECTRA OF NEGATIVELY CHARGED WATER AND AMMONIA CLUSTERS
    HABERLAND, H
    SCHINDLER, HG
    WORSNOP, DR
    BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1984, 88 (03): : 270 - 272
  • [47] STABILITY AND OBSERVABILITY OF CHARGED BERYLLIUM CLUSTERS
    KHANNA, SN
    REUSE, F
    BUTTET, J
    PHYSICAL REVIEW LETTERS, 1988, 61 (05) : 535 - 538
  • [48] a computational study of proton and electron affinities (vol 55, pg 10013, 1999)
    Sauers, Ronald R.
    TETRAHEDRON, 2012, 68 (03) : 931 - 932
  • [49] STABILITY OF POSITIVELY CHARGED METALLIC CLUSTERS
    MUKHERJEE, S
    TOMANEK, D
    BENNEMANN, KH
    CHEMICAL PHYSICS LETTERS, 1985, 119 (2-3) : 241 - 243
  • [50] STABILITY OF POSITIVELY CHARGED METALLIC CLUSTERS
    BENNEMANN, KH
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1985, 60 (2-4): : 161 - 164