Stability and Electron Affinities of Negatively Charged Aluminium Clusters: A Computational Study

被引:0
|
作者
Goldberg, Alexander [2 ]
Oliva, Josep M. [1 ]
Walsh, Noelle [3 ]
Martinez, Franklin [3 ]
Marx, Gerrit [3 ]
Schweikhard, Lutz [3 ]
Fernandez-Barbero, Antonio [4 ]
机构
[1] CSIC, Inst Quim Fis Rocasolano, E-28006 Madrid, Spain
[2] Accelrys Inc, San Diego, CA 92121 USA
[3] Ernst Moritz Arndt Univ Greifswald, Inst Phys, D-17487 Greifswald, Germany
[4] Univ Almeria, Grp Complex Fluid Phys, Almeria 04120, Spain
关键词
Clusters; Aluminium; ClusterTrap; Penning Trap; DFT; Charged Conducting-Sphere Model; Coulomb Barrier; Tunneling; GENERALIZED GRADIENT APPROXIMATION; PHOTOELECTRON-SPECTROSCOPY; METAL-CLUSTERS; IONIZATION; MOLECULES; POTENTIALS; PARTICLES; SOLIDS; ENERGY; MODEL;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A computational study on the stability of neutral, singly and doubly negatively charged aluminium clusters Al-n(z), with n = {13, 18, 23, 39, 55}, and z = {0, -1, -2} is presented. Estimates of electron affinities (EA) were computed with (i) all-electron quantum-mechanical calculations with full geometry optimization on Alnz, with n = {13, 18, 23, 39, 55}, and z = {0, -1, -2), using the Perdew-Burke-Ernzerhof (PBE) gradient-corrected functional within Density Functional Theory (DFT) and (ii) Charged Conducting-Sphere Model with and without Coulomb barrier and tunnelling corrections. If a positive value for the second electron affinity of the cluster is considered to be the sole criterion for the production and experimental observation of dianionic aluminium clusters, then the predicted minimum cluster size (i.e. the number of atoms) is n similar to 23 and n similar to 32 from the all-electron computations and the charged conducting-sphere model, respectively.
引用
收藏
页码:285 / 292
页数:8
相关论文
共 50 条
  • [31] STABILITY OF CHARGED ALUMINUM CLUSTERS
    MARTINEZ, A
    VELA, A
    PHYSICAL REVIEW B, 1994, 49 (24): : 17464 - 17467
  • [32] REARRANGEMENTS IN NEGATIVELY CHARGED AMMONIUM-NITRATE CLUSTERS
    DOYLE, RJ
    DUNLAP, BI
    JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (34): : 8261 - 8263
  • [33] EPR peculiarities in negatively charged ammonium and water clusters
    Lakhno, VD
    IZVESTIYA AKADEMII NAUK SERIYA FIZICHESKAYA, 1997, 61 (09): : 1827 - 1828
  • [34] Structure and stability of charged clusters
    Miller, Mark A.
    Bonhommeau, David A.
    Heard, Christopher J.
    Shin, Yuyoung
    Spezia, Riccardo
    Gaigeot, Marie-Pierre
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (28)
  • [35] ELECTRONIC-STRUCTURE OF NEGATIVELY CHARGED ALUMINUM CLUSTERS
    RUBIO, A
    BALBAS, LC
    ALONSO, JA
    PHYSICA B, 1991, 168 (01): : 32 - 38
  • [36] On the nature of the absorption band of negatively charged polar clusters
    Lakhno, VD
    Leonova, NL
    IZVESTIYA AKADEMII NAUK SERIYA FIZICHESKAYA, 2000, 64 (08): : 1458 - 1464
  • [37] Simulations of negatively-charged water clusters.
    Jordan, KD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 227 : U248 - U248
  • [38] Optical and electrical properties of negatively charged aluminium oxynitride films
    Jang, Kyungsoo
    Jung, Sungwook
    Lee, Jeoungin
    Lee, Kwangsoo
    Kim, Jaehong
    Son, Hyukjoo
    Yi, Junsin
    THIN SOLID FILMS, 2008, 517 (01) : 444 - 446
  • [39] A computational study of the electron affinities of substituted Cope rearrangement transition states
    Wenthold, PG
    JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2, 1999, (11): : 2357 - 2363
  • [40] A rigorous study on the charged gap in strongly correlated electron clusters
    Tian, GS
    Wang, JG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (04): : 941 - 950