Machine-learning interatomic potential for W-Mo alloys

被引:14
|
作者
Nikoulis, Giorgos [1 ,2 ]
Byggmastar, Jesper [2 ]
Kioseoglou, Joseph [1 ]
Nordlund, Kai [2 ]
Djurabekova, Flyura [2 ,3 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Phys, GR-54124 Thessaloniki, Greece
[2] Univ Helsinki, Dept Phys, POB 43, FI-00014 Helsinki, Finland
[3] Helsinki Inst Phys, Helsinki, Finland
基金
欧盟地平线“2020”;
关键词
interatomic potential; machine learning; tungsten; molybdenum; alloys; THRESHOLD DISPLACEMENT ENERGIES; MOLECULAR-DYNAMICS; METALS;
D O I
10.1088/1361-648X/ac03d1
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this work, we develop a machine-learning interatomic potential for WxMo1-x random alloys. The potential is trained using the Gaussian approximation potential framework and density functional theory data produced by the Vienna ab initio simulation package. The potential focuses on properties such as elastic properties, melting, and point defects for the whole range of WxMo1-x compositions. Moreover, we use all-electron density functional theory data to fit an adjusted Ziegler-Biersack-Littmarck potential for the short-range repulsive interaction. We use the potential to investigate the effect of alloying on the threshold displacement energies and find a significant dependence on the local chemical environment and element of the primary recoiling atom.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Efficient atomistic simulations of radiation damage in W and W-Mo using machine-learning potentials
    Koskenniemi, Mikko
    Byggmastar, Jesper
    Nordlund, Kai
    Djurabekova, Flyura
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2023, 577
  • [2] Complex strengthening mechanisms in nanocrystalline Ni-Mo alloys revealed by a machine-learning interatomic potential
    Li, Xiang-Guo
    Zhang, Qian
    Liu, Shenghua
    Shuai, Jing
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 952
  • [3] Mo-Si Alloys Studied by Atomistic Computer Simulations Using a Novel Machine-Learning Interatomic Potential: Thermodynamics and Interface Phenomena
    Lenchuk, Olena
    Rohrer, Jochen
    Albe, Karsten
    [J]. ADVANCED ENGINEERING MATERIALS, 2024, 26 (17)
  • [4] Machine-learning interatomic potential for radiation damage and defects in tungsten
    Byggmastar, J.
    Hamedani, A.
    Nordlund, K.
    Djurabekova, F.
    [J]. PHYSICAL REVIEW B, 2019, 100 (14)
  • [5] ELECTRON OPTICAL STUDIES OF W-MO ALLOYS
    PUMPURS, VM
    SPIVAK, GV
    SHISHKIN, BB
    [J]. IZVESTIYA AKADEMII NAUK SSSR SERIYA FIZICHESKAYA, 1968, 32 (06): : 1035 - &
  • [6] A machine learning interatomic potential for high entropy alloys
    Wu, Lianping
    Li, Teng
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2024, 187
  • [7] ELASTIC PROPERTIES OF THORIATED W-MO AND W-MO-RE ALLOYS
    BROWN, HL
    KEMPTER, CP
    [J]. JOURNAL OF THE LESS-COMMON METALS, 1967, 12 (02): : 166 - &
  • [8] A machine-learning interatomic potential to understand primary radiation damage of silicon
    Niu, Hongwei
    Zhao, Junqing
    Li, Huyang
    Sun, Yi
    Park, Jae Hyun
    Jing, Yuhang
    Li, Weiqi
    Yang, Jianqun
    Li, Xingji
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2023, 218
  • [9] Machine-Learning Based Interatomic Potential for Studying the Properties of Crystal Structures
    Uvarova O.V.
    Uvarov S.I.
    [J]. Russian Microelectronics, 2021, 50 (08) : 623 - 627
  • [10] A physics-based machine learning study of the behavior of interstitial helium in single crystal W-Mo binary alloys
    Samin, Adib J.
    [J]. JOURNAL OF APPLIED PHYSICS, 2020, 127 (17)