Machine-learning interatomic potential for radiation damage and defects in tungsten

被引:85
|
作者
Byggmastar, J. [1 ]
Hamedani, A. [1 ,2 ]
Nordlund, K. [1 ]
Djurabekova, F. [1 ,3 ]
机构
[1] Univ Helsinki, Dept Phys, POB 43, FI-00014 Helsinki, Finland
[2] Shahid Beheshti Univ, GC, Engn Dept, POB 1983969411, Tehran, Iran
[3] Univ Helsinki, Helsinki Inst Phys, FI-00014 Helsinki, Finland
关键词
INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; CASCADE DAMAGE; IN-SITU; TRANSITION; SEMICONDUCTORS; APPROXIMATION; SIMULATIONS; VACANCIES; RECOVERY;
D O I
10.1103/PhysRevB.100.144105
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a machine-learning interatomic potential for tungsten using the Gaussian approximation potential framework. We specifically focus on properties relevant for simulations of radiation-induced collision cascades and the damage they produce, including a realistic repulsive potential for the short-range many-body cascade dynamics and a good description of the liquid phase. Furthermore, the potential accurately reproduces surface properties and the energetics of vacancy and self-interstitial clusters, which have been longstanding deficiencies of existing potentials. The potential enables molecular dynamics simulations of radiation damage in tungsten with unprecedented accuracy.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A machine-learning interatomic potential to understand primary radiation damage of silicon
    Niu, Hongwei
    Zhao, Junqing
    Li, Huyang
    Sun, Yi
    Park, Jae Hyun
    Jing, Yuhang
    Li, Weiqi
    Yang, Jianqun
    Li, Xingji
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2023, 218
  • [2] Machine-learning interatomic potential for radiation damage effects in bcc-iron
    Wang, Yi
    Liu, Jianbo
    Li, Jiahao
    Mei, Jinna
    Li, Zhengcao
    Lai, Wensheng
    Xue, Fei
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2022, 202
  • [3] A deep learning interatomic potential suitable for simulating radiation damage in bulk tungsten
    Ding, Chang-Jie
    Lei, Ya-Wei
    Wang, Xiao-Yang
    Li, Xiao-Lin
    Li, Xiang-Yan
    Zhang, Yan-Ge
    Xu, Yi-Chun
    Liu, Chang-Song
    Wu, Xue-Bang
    [J]. TUNGSTEN, 2024, 6 (02) : 304 - 322
  • [4] A deep learning interatomic potential suitable for simulating radiation damage in bulk tungsten
    ChangJie Ding
    YaWei Lei
    XiaoYang Wang
    XiaoLin Li
    XiangYan Li
    YanGe Zhang
    YiChun Xu
    ChangSong Liu
    XueBang Wu
    [J]. Tungsten., 2024, 6 (02) - 322
  • [5] Insights into the primary radiation damage of silicon by a machine learning interatomic potential
    Hamedani, A.
    Byggmastar, J.
    Djurabekova, F.
    Alahyarizadeh, G.
    Ghaderi, R.
    Minuchehr, A.
    Nordlund, K.
    [J]. MATERIALS RESEARCH LETTERS, 2020, 8 (10): : 364 - 372
  • [6] A deep learning interatomic potential suitable for simulating radiation damage in bulk tungsten
    Chang-Jie Ding
    Ya-Wei Lei
    Xiao-Yang Wang
    Xiao-Lin Li
    Xiang-Yan Li
    Yan-Ge Zhang
    Yi-Chun Xu
    Chang-Song Liu
    Xue-Bang Wu
    [J]. Tungsten, 2024, (02) : 304 - 322
  • [7] A deep learning interatomic potential suitable for simulating radiation damage in bulk tungsten
    Chang-Jie Ding
    Ya-Wei Lei
    Xiao-Yang Wang
    Xiao-Lin Li
    Xiang-Yan Li
    Yan-Ge Zhang
    Yi-Chun Xu
    Chang-Song Liu
    Xue-Bang Wu
    [J]. Tungsten, 2024, 6 : 304 - 322
  • [8] Achieving DFT accuracy with a machine-learning interatomic potential: Thermomechanics and defects in bcc ferromagnetic iron
    Dragoni, Daniele
    Daff, Thomas D.
    Csanyi, Gabor
    Marzari, Nicola
    [J]. PHYSICAL REVIEW MATERIALS, 2018, 2 (01):
  • [9] Primary radiation damage in silicon from the viewpoint of a machine learning interatomic potential
    Hamedani, A.
    Byggmastar, J.
    Djurabekova, F.
    Alahyarizadeh, G.
    Ghaderi, R.
    Minuchehr, A.
    Nordlund, K.
    [J]. PHYSICAL REVIEW MATERIALS, 2021, 5 (11)
  • [10] Machine-learning interatomic potential for W-Mo alloys
    Nikoulis, Giorgos
    Byggmastar, Jesper
    Kioseoglou, Joseph
    Nordlund, Kai
    Djurabekova, Flyura
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (31)