Machine-learning interatomic potential for radiation damage effects in bcc-iron

被引:12
|
作者
Wang, Yi [1 ,2 ]
Liu, Jianbo [2 ]
Li, Jiahao [2 ]
Mei, Jinna [1 ]
Li, Zhengcao [2 ]
Lai, Wensheng [2 ]
Xue, Fei [1 ]
机构
[1] Suzhou Nucl Power Res Inst, Suzhou 215004, Peoples R China
[2] Tsinghua Univ, Key Lab Adv Mat MOE, Sch Mat Sci & Engn, Beijing 100084, Peoples R China
关键词
Interatomic potential; Machine-learning potential; Fe; Radiation damage; Molecular dynamics; AB-INITIO CALCULATIONS; INTERSTITIAL CLUSTERS; MOLECULAR-DYNAMICS; STACKING-FAULTS; CORE-STRUCTURE; ALPHA-FE; PHASE; POINTS;
D O I
10.1016/j.commatsci.2021.110960
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a machine-learning interatomic potential for bcc iron based on the moment tensor potential framework and a hybridization scheme of distinct sub-potentials. With an orientation on radiation damage effects, the potential shows good transferability from properties relevant to collision cascade to those relevant to plasticity. Specifically, the potential accurately reproduces the short-range repulsive interactions, the generalized stacking fault energies, the dislocation core structures and the formation energies of defect clusters. The general purposed applicability of the potential enables simulation of radiation damage effects in bcc iron with an accurate and an unprecedentedly unified theoretical model.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Machine-learning interatomic potential for radiation damage and defects in tungsten
    Byggmastar, J.
    Hamedani, A.
    Nordlund, K.
    Djurabekova, F.
    [J]. PHYSICAL REVIEW B, 2019, 100 (14)
  • [2] A machine-learning interatomic potential to understand primary radiation damage of silicon
    Niu, Hongwei
    Zhao, Junqing
    Li, Huyang
    Sun, Yi
    Park, Jae Hyun
    Jing, Yuhang
    Li, Weiqi
    Yang, Jianqun
    Li, Xingji
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2023, 218
  • [3] Achieving DFT accuracy with a machine-learning interatomic potential: Thermomechanics and defects in bcc ferromagnetic iron
    Dragoni, Daniele
    Daff, Thomas D.
    Csanyi, Gabor
    Marzari, Nicola
    [J]. PHYSICAL REVIEW MATERIALS, 2018, 2 (01):
  • [4] Insights into the primary radiation damage of silicon by a machine learning interatomic potential
    Hamedani, A.
    Byggmastar, J.
    Djurabekova, F.
    Alahyarizadeh, G.
    Ghaderi, R.
    Minuchehr, A.
    Nordlund, K.
    [J]. MATERIALS RESEARCH LETTERS, 2020, 8 (10): : 364 - 372
  • [5] Multiscale machine-learning interatomic potentials for ferromagnetic and liquid iron
    Byggmastar, J.
    Nikoulis, G.
    Fellman, A.
    Granberg, F.
    Djurabekova, F.
    Nordlund, K.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (30)
  • [6] Primary radiation damage in silicon from the viewpoint of a machine learning interatomic potential
    Hamedani, A.
    Byggmastar, J.
    Djurabekova, F.
    Alahyarizadeh, G.
    Ghaderi, R.
    Minuchehr, A.
    Nordlund, K.
    [J]. PHYSICAL REVIEW MATERIALS, 2021, 5 (11):
  • [7] Primary Ion-Irradiation Damage of BCC-Iron Surfaces
    Korchuganov, A. V.
    Zolnikov, K. P.
    Kryzhevich, D. S.
    Psakhie, S. G.
    [J]. RUSSIAN PHYSICS JOURNAL, 2017, 60 (01) : 170 - 174
  • [8] Machine-learning interatomic potential for W-Mo alloys
    Nikoulis, Giorgos
    Byggmastar, Jesper
    Kioseoglou, Joseph
    Nordlund, Kai
    Djurabekova, Flyura
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (31)
  • [9] Primary Ion-Irradiation Damage of BCC-Iron Surfaces
    A. V. Korchuganov
    K. P. Zolnikov
    D. S. Kryzhevich
    S. G. Psakhie
    [J]. Russian Physics Journal, 2017, 60 : 170 - 174
  • [10] Machine-Learning Based Interatomic Potential for Studying the Properties of Crystal Structures
    Uvarova O.V.
    Uvarov S.I.
    [J]. Russian Microelectronics, 2021, 50 (08) : 623 - 627