Machine-learning interatomic potential for W-Mo alloys

被引:15
|
作者
Nikoulis, Giorgos [1 ,2 ]
Byggmastar, Jesper [2 ]
Kioseoglou, Joseph [1 ]
Nordlund, Kai [2 ]
Djurabekova, Flyura [2 ,3 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Phys, GR-54124 Thessaloniki, Greece
[2] Univ Helsinki, Dept Phys, POB 43, FI-00014 Helsinki, Finland
[3] Helsinki Inst Phys, Helsinki, Finland
基金
欧盟地平线“2020”;
关键词
interatomic potential; machine learning; tungsten; molybdenum; alloys; THRESHOLD DISPLACEMENT ENERGIES; MOLECULAR-DYNAMICS; METALS;
D O I
10.1088/1361-648X/ac03d1
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this work, we develop a machine-learning interatomic potential for WxMo1-x random alloys. The potential is trained using the Gaussian approximation potential framework and density functional theory data produced by the Vienna ab initio simulation package. The potential focuses on properties such as elastic properties, melting, and point defects for the whole range of WxMo1-x compositions. Moreover, we use all-electron density functional theory data to fit an adjusted Ziegler-Biersack-Littmarck potential for the short-range repulsive interaction. We use the potential to investigate the effect of alloying on the threshold displacement energies and find a significant dependence on the local chemical environment and element of the primary recoiling atom.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Machine-learning interatomic potentials for pyrolysis of polysiloxanes and properties of SiCO ceramics
    Falgoust, Mitchell
    Kroll, Peter
    [J]. Journal of the American Ceramic Society, 1600, 107 (12): : 7653 - 7664
  • [32] Development of machine learning interatomic potential for zinc
    Mei, Haojie
    Cheng, Luyao
    Chen, Liang
    Wang, Feifei
    Li, Jinfu
    Kong, Lingti
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2024, 233
  • [33] PHONONS IN A W-MO(001) SUPERLATTICE
    BRITOORTA, RA
    VELASCO, VR
    GARCIAMOLINER, F
    [J]. PHYSICAL REVIEW B, 1988, 38 (14): : 9631 - 9637
  • [34] First-principles investigation of W-V and W-Mo alloys as potential plasma facing materials (PFMs) for nuclear application
    Phasha, M. J.
    Bolokang, A. S.
    Kebede, M. A.
    [J]. INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2021, 95
  • [35] Machine-learning interatomic potentials for pyrolysis of polysiloxanes and properties of SiCO ceramics
    Falgoust, Mitchell
    Kroll, Peter
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2024,
  • [36] Prediction of sintered density of binary W(Mo) alloys using machine learning
    He-Xiong Liu
    Yun-Fei Yang
    Yong-Feng Cai
    Chang-Hao Wang
    Chen Lai
    Yao-Wu Hao
    Jin-Shu Wang
    [J]. Rare Metals, 2023, 42 (08) : 2713 - 2724
  • [37] Prediction of sintered density of binary W(Mo) alloys using machine learning
    He-Xiong Liu
    Yun-Fei Yang
    Yong-Feng Cai
    Chang-Hao Wang
    Chen Lai
    Yao-Wu Hao
    Jin-Shu Wang
    [J]. Rare Metals, 2023, 42 : 2713 - 2724
  • [38] Prediction of sintered density of binary W(Mo) alloys using machine learning
    Liu, He-Xiong
    Yang, Yun-Fei
    Cai, Yong-Feng
    Wang, Chang-Hao
    Lai, Chen
    Hao, Yao-Wu
    Wang, Jin-Shu
    [J]. RARE METALS, 2023, 42 (08) : 2713 - 2724
  • [39] Machine-learning potential of a single pendulum
    Mandal, Swarnendu
    Sinha, Sudeshna
    Shrimali, Manish Dev
    [J]. PHYSICAL REVIEW E, 2022, 105 (05)
  • [40] First-principles study phonon and thermodynamic properties of binary W-Mo alloys
    Shen, Yan Hong
    Yu, You
    Deng, Jiang
    Kong, Xiang Gang
    Tian, Xiao Feng
    Li, Ye Gu
    [J]. MATERIALS TODAY COMMUNICATIONS, 2022, 33