Wave propagation in linear and nonlinear structures

被引:10
|
作者
Lidorikis, E
Busch, K
Li, QM
Chan, CT
Soukoulis, CM [1 ]
机构
[1] US DOE, Ames Lab, Ames, IA 50011 USA
[2] Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames, IA 50011 USA
[3] Univ Karlsruhe, Inst Theorie Kondesierten Mat, D-76128 Karlsruhe, Germany
[4] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong
来源
PHYSICA D | 1998年 / 113卷 / 2-4期
关键词
D O I
10.1016/S0167-2789(97)00289-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the general problem of electromagnetic wave propagation through a one-dimensional system consisting of a nonlinear medium sandwiched between two linear structures. Special emphasis is given to systems where the latter comprise Bragg-reflectors. We obtain an exact expression for the nonlinear response of such dielectric superlattices when the nonlinear impurity is very thin, or in thc delta-function limit. We find that both the switching-up and switching-down intensities of the bistable response can be made very lour, when the frequency of the incident wave matches that of the impurity mode of the structure, Numerical results for it nonlinear layer of finite width display qualitatively similar behavior, thus confirming the usefulness of the simpler delta-function model, In addition, an analytical solution for the resonance states of an infinitely extended finite width superlattice with a finite width nonlinear impurity is presented. Finally, we investigate the adequacy of the Kronig-Penney delta-function model in describing the electromagnetic wave propagation in periodic structures consistent of thin layers of materials with an intensity-dependent dielectric constant. Copyright (C) 1998 Elsevier Science B.V.
引用
收藏
页码:346 / 365
页数:20
相关论文
共 50 条
  • [21] Highly Nonlinear Wave Propagation in Elastic Woodpile Periodic Structures
    Kim, E.
    Li, F.
    Chong, C.
    Theocharis, G.
    Yang, J.
    Kevrekidis, P. G.
    PHYSICAL REVIEW LETTERS, 2015, 114 (11)
  • [22] Nonlinear spin-wave propagation in the nonidentical magnonic structures
    Odintsov, S. A.
    Sadovnikov, A., V
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2018, 26 (06): : 59 - 67
  • [23] A perturbation approach for predicting wave propagation at the spatial interface of linear and nonlinear one-dimensional lattice structures
    Lezheng Fang
    Michael J. Leamy
    Nonlinear Dynamics, 2024, 112 : 5015 - 5036
  • [24] A perturbation approach for predicting wave propagation at the spatial interface of linear and nonlinear one-dimensional lattice structures
    Fang, Lezheng
    Leamy, Michael J.
    NONLINEAR DYNAMICS, 2024, 112 (07) : 5015 - 5036
  • [25] A VARIATIONAL PRINCIPLE FOR LINEAR AND NONLINEAR-WAVE PROPAGATION IN A DISSIPATIVE MEDIUM
    SHIVAMOGGI, BK
    ROLLINS, DK
    PHYSICA SCRIPTA, 1991, 43 (03): : 236 - 239
  • [26] SIMULATION OF LINEAR AND NONLINEAR-WAVE PROPAGATION ON TRANSMISSION-LINES
    CARTER, BL
    HARKEN, DR
    PARRY, JH
    SAMSON, SA
    SNYDER, HS
    SUTTON, EC
    BAI, EW
    LONNGREN, KE
    ELECTROMAGNETICS, 1995, 15 (06) : 665 - 677
  • [28] Interlaced linear-nonlinear wave propagation in a warm multicomponent plasma
    Dutta, Debjit
    Singha, Prasenjit
    Sahu, Biswajit
    PHYSICS OF PLASMAS, 2014, 21 (12)
  • [29] Replication of apparent nonlinear seismic response with linear wave propagation models
    O'Connell, DRH
    SCIENCE, 1999, 283 (5410) : 2045 - 2050
  • [30] Rigorous derivation of nonlinear Dirac equations for wave propagation in honeycomb structures
    Arbunich, Jack
    Sparber, Christof
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)