Wave propagation in linear and nonlinear structures

被引:10
|
作者
Lidorikis, E
Busch, K
Li, QM
Chan, CT
Soukoulis, CM [1 ]
机构
[1] US DOE, Ames Lab, Ames, IA 50011 USA
[2] Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames, IA 50011 USA
[3] Univ Karlsruhe, Inst Theorie Kondesierten Mat, D-76128 Karlsruhe, Germany
[4] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong
来源
PHYSICA D | 1998年 / 113卷 / 2-4期
关键词
D O I
10.1016/S0167-2789(97)00289-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the general problem of electromagnetic wave propagation through a one-dimensional system consisting of a nonlinear medium sandwiched between two linear structures. Special emphasis is given to systems where the latter comprise Bragg-reflectors. We obtain an exact expression for the nonlinear response of such dielectric superlattices when the nonlinear impurity is very thin, or in thc delta-function limit. We find that both the switching-up and switching-down intensities of the bistable response can be made very lour, when the frequency of the incident wave matches that of the impurity mode of the structure, Numerical results for it nonlinear layer of finite width display qualitatively similar behavior, thus confirming the usefulness of the simpler delta-function model, In addition, an analytical solution for the resonance states of an infinitely extended finite width superlattice with a finite width nonlinear impurity is presented. Finally, we investigate the adequacy of the Kronig-Penney delta-function model in describing the electromagnetic wave propagation in periodic structures consistent of thin layers of materials with an intensity-dependent dielectric constant. Copyright (C) 1998 Elsevier Science B.V.
引用
收藏
页码:346 / 365
页数:20
相关论文
共 50 条
  • [11] LINEAR AND NONLINEAR ACOUSTIC WAVE PROPAGATION IN THE ATMOSPHERE.
    Hariharan, S.I.
    Yu, Ping
    NASA Contractor Reports, 1988, (4157): : 1 - 35
  • [12] Linear and nonlinear wave propagation in negative refraction metamaterials
    Agranovich, VM
    Shen, YR
    Baughman, RH
    Zakhidov, AA
    PHYSICAL REVIEW B, 2004, 69 (16): : 165112 - 1
  • [13] Linear and nonlinear wave propagation in booming sand dunes
    Vriend, N. M.
    Hunt, M. L.
    Clayton, R. W.
    PHYSICS OF FLUIDS, 2015, 27 (10)
  • [14] Nonlinear electromagnetic wave propagation in ferroelectric integrated structures
    Krowne, CM
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1998, 17 (03) : 213 - 225
  • [15] Wave propagation in nonlinear monoatomic chains with linear and quadratic damping
    Sepehri, Soroush
    Mashhadi, Mahmoud Mosavi
    Fakhrabadi, Mir Masoud Seyyed
    NONLINEAR DYNAMICS, 2022, 108 (01) : 457 - 478
  • [16] Wave propagation in nonlinear monoatomic chains with linear and quadratic damping
    Soroush Sepehri
    Mahmoud Mosavi Mashhadi
    Mir Masoud Seyyed Fakhrabadi
    Nonlinear Dynamics, 2022, 108 : 457 - 478
  • [17] Linear and nonlinear wave propagation in weakly relativistic quantum plasmas
    Stefan, Martin
    Brodin, Gert
    PHYSICS OF PLASMAS, 2013, 20 (01)
  • [18] Linear and nonlinear Alfven wave propagation in compressible MHD plasmas
    Li, Zhong-Zheng
    Han, Juan-Fang
    Wang, Fang-Ping
    Chen, Zheng-Wu
    Xie, Li-Qiang
    Duan, Wen-Shan
    MODERN PHYSICS LETTERS B, 2020, 34 (25):
  • [19] Superluminal pulse propagation in linear and nonlinear photonic grating structures
    Longhi, S
    Marano, M
    Belmonte, M
    Laporta, P
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2003, 9 (01) : 4 - 16
  • [20] WAVE PROPAGATION IN MEMBRANE-BASED NONLINEAR PERIODIC STRUCTURES
    Narisetti, Raj K.
    Ruzzene, Massimo
    Leamy, Michael J.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2011, VOL 1, PTS A AND B: 23RD BIENNIAL CONFERENCE ON MECHANICAL VIBRATION AND NOISE, 2012, : 213 - 220