Wave propagation in linear and nonlinear structures

被引:10
|
作者
Lidorikis, E
Busch, K
Li, QM
Chan, CT
Soukoulis, CM [1 ]
机构
[1] US DOE, Ames Lab, Ames, IA 50011 USA
[2] Iowa State Univ Sci & Technol, Dept Phys & Astron, Ames, IA 50011 USA
[3] Univ Karlsruhe, Inst Theorie Kondesierten Mat, D-76128 Karlsruhe, Germany
[4] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong
来源
PHYSICA D | 1998年 / 113卷 / 2-4期
关键词
D O I
10.1016/S0167-2789(97)00289-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the general problem of electromagnetic wave propagation through a one-dimensional system consisting of a nonlinear medium sandwiched between two linear structures. Special emphasis is given to systems where the latter comprise Bragg-reflectors. We obtain an exact expression for the nonlinear response of such dielectric superlattices when the nonlinear impurity is very thin, or in thc delta-function limit. We find that both the switching-up and switching-down intensities of the bistable response can be made very lour, when the frequency of the incident wave matches that of the impurity mode of the structure, Numerical results for it nonlinear layer of finite width display qualitatively similar behavior, thus confirming the usefulness of the simpler delta-function model, In addition, an analytical solution for the resonance states of an infinitely extended finite width superlattice with a finite width nonlinear impurity is presented. Finally, we investigate the adequacy of the Kronig-Penney delta-function model in describing the electromagnetic wave propagation in periodic structures consistent of thin layers of materials with an intensity-dependent dielectric constant. Copyright (C) 1998 Elsevier Science B.V.
引用
收藏
页码:346 / 365
页数:20
相关论文
共 50 条
  • [1] Wave propagation in linear and nonlinear structures
    Lidorikis, E.
    Busch, K.
    Li, Qiming
    Chan, C.T.
    Soukoulis, C.M.
    [J]. Physica D: Nonlinear Phenomena, 1998, 113 (2-4): : 346 - 365
  • [2] Wave propagation in nonlinear multilayer structures
    Lidorikis, E
    Li, QM
    Soukoulis, CM
    [J]. PHYSICAL REVIEW B, 1996, 54 (15): : 10249 - 10252
  • [3] Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures
    Melloni, A
    Morichetti, F
    Martinelli, M
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2003, 35 (04) : 365 - 379
  • [4] Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures
    Andrea Melloni
    Francesco Morichetti
    Mario Martinelli
    [J]. Optical and Quantum Electronics, 2003, 35 : 365 - 379
  • [5] Linear and nonlinear wave propagation in rarefied plasmas
    Ballai, I
    Erdélyi, R
    Voitenko, Y
    Goossens, M
    [J]. PHYSICS OF PLASMAS, 2002, 9 (06) : 2593 - 2603
  • [6] NONLINEAR-WAVE PROPAGATION IN PLANAR STRUCTURES
    MIHALACHE, D
    BERTOLOTTI, M
    SIBILIA, C
    [J]. PROGRESS IN OPTICS, 1989, 27 : 227 - 313
  • [7] Identifying coherent structures in nonlinear wave propagation
    Newman, William I.
    Campbell, David K.
    Hyman, James M.
    [J]. CHAOS, 1991, 1 (01) : 77 - 94
  • [8] Linear and nonlinear wave propagation in negative refraction metamaterials
    Agranovich, VM
    Shen, YR
    Baughman, RH
    Zakhidov, AA
    [J]. PHYSICAL REVIEW B, 2004, 69 (16): : 165112 - 1
  • [9] LINEAR AND NONLINEAR PROPAGATION OF WATER-WAVE GROUPS
    PIERSON, WJ
    DONELAN, MA
    HUI, WH
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1992, 97 (C4) : 5607 - 5621
  • [10] LINEAR AND NONLINEAR ACOUSTIC-WAVE PROPAGATION IN THE ATMOSPHERE
    HARIHARAN, SI
    PING, Y
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (03): : 488 - 514