Formation Mechanism of Rutile TiO2 Rods on Fluorine Doped Tin Oxide Glass

被引:11
|
作者
Meng, Xianhui [1 ]
Shin, Dong-Wook [2 ,3 ]
Yu, Seong Man [2 ,3 ]
Park, Min-Ho [1 ]
Yang, Cheolwoong [1 ]
Lee, Jung Heon [1 ,2 ,3 ]
Yoo, Ji-Beom [1 ,2 ,3 ]
机构
[1] Sungkyunkwan Univ SKKU, Sch Adv Mat Sci & Engn BK21, Suwon 440746, South Korea
[2] Sungkyunkwan Univ SKKU, SKKU Adv Inst Nanotechnol SAINT, Suwon 440746, South Korea
[3] Sungkyunkwan Univ SKKU, Ctr Human Interface Nano Technol HINT, Suwon 440746, South Korea
基金
新加坡国家研究基金会;
关键词
Rutile TiO2; FTO Glass; Hydrothermal Process; Ostwald Ripening; Oriented Attachment; SENSITIZED SOLAR-CELLS; TRANSFORMATION KINETICS; PHASE-STABILITY; NANORODS; SURFACE; GROWTH; FABRICATION; ARRAYS; FILMS;
D O I
10.1166/jnn.2014.10016
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the formation mechanism of rutile TiO2 rods grown directly on fluorine doped tin oxide (FTO) glass by hydrothermal process at 130 degrees C. Through SEM images, we could monitor detailed nucleation and crystal growth process of TiO2 nanorods. The TiO2 nanorods started to nucleate and grow along the grain boundaries of SnO2 on FTO glass. As the reaction time increased, fine TiO2 nanorods started to encounter each other on (110) faces and merge, resulting in growth of micrometer scale rods in [001] direction. Through TEM, SAED, and XRD analyses, we propose that the nucleation of TiO2 on SnO2 grain boundaries occurs by Ostwald ripening (OR) while the merging of small TiO2 nanorods for the formation of larger rods occurs through oriented attachment (OA). The merged nanorods grow toward [001] direction to reduce surface energy.
引用
收藏
页码:8839 / 8844
页数:6
相关论文
共 50 条
  • [31] The electronic structure of Ni doped rutile TiO2
    Yoon-Suk Kim
    Yong-Chae Chung
    Kyung Sub Lee
    Journal of Electroceramics, 2006, 17 : 951 - 953
  • [32] Formation and properties of phospholipid bilayers on fluorine doped tin oxide electrodes
    Gabriunaite, Inga
    Valiuniene, Ausra
    Valincius, Gintaras
    ELECTROCHIMICA ACTA, 2018, 283 : 1351 - 1358
  • [33] Photooxidation Mechanism of Methanol on Rutile TiO2 Nanoparticles
    Panayotov, Dimitar A.
    Burrows, Steven P.
    Morris, John R.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (11): : 6623 - 6635
  • [34] Dual Mechanism of Indium Incorporation into TiO2 (Rutile)
    Nowotny, Janusz
    Bak, Tadeusz
    Alim, Mohammad A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (02): : 1146 - 1154
  • [35] Density functional theory study of Chlorine, Fluorine, Nitrogen, and Sulfur doped rutile TiO2 for photocatalytic application
    Geldasa, Fikadu Takele
    Dejene, Francis Birhanu
    Kebede, Mesfin Abayneh
    Hone, Fekadu Gashaw
    Jira, Edosa Tasisa
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [36] PTTIX PRECIPITATE FORMATION IN TIO2 (RUTILE) SUBSTRATE
    DONLON, WT
    SHINOZAKI, S
    MEITZLER, AH
    JOURNAL OF METALS, 1981, 33 (09): : A39 - A39
  • [37] Prediction of tetraoxygen formation on rutile TiO2(110)
    Pillay, Devina
    Wang, Yun
    Hwang, Gyeong S.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (43) : 14000 - 14001
  • [38] Formation of the rutile TiO2 under ultrasonic irradiation
    Guo, WL
    Wang, XK
    JOURNAL OF MATERIALS SCIENCE, 2004, 39 (09) : 3265 - 3266
  • [39] PTTIX PRECIPITATE FORMATION IN TIO2 (RUTILE) SUBSTRATE
    DONLON, WT
    SHINOZAKI, S
    MEITZLER, AH
    AMERICAN CERAMIC SOCIETY BULLETIN, 1981, 60 (08): : 855 - 855
  • [40] Formation of the rutile TiO2 under ultrasonic irradiation
    Guo W.-L.
    Wang X.-K.
    Journal of Materials Science, 2004, 39 (9) : 3265 - 3266