Formation Mechanism of Rutile TiO2 Rods on Fluorine Doped Tin Oxide Glass

被引:11
|
作者
Meng, Xianhui [1 ]
Shin, Dong-Wook [2 ,3 ]
Yu, Seong Man [2 ,3 ]
Park, Min-Ho [1 ]
Yang, Cheolwoong [1 ]
Lee, Jung Heon [1 ,2 ,3 ]
Yoo, Ji-Beom [1 ,2 ,3 ]
机构
[1] Sungkyunkwan Univ SKKU, Sch Adv Mat Sci & Engn BK21, Suwon 440746, South Korea
[2] Sungkyunkwan Univ SKKU, SKKU Adv Inst Nanotechnol SAINT, Suwon 440746, South Korea
[3] Sungkyunkwan Univ SKKU, Ctr Human Interface Nano Technol HINT, Suwon 440746, South Korea
基金
新加坡国家研究基金会;
关键词
Rutile TiO2; FTO Glass; Hydrothermal Process; Ostwald Ripening; Oriented Attachment; SENSITIZED SOLAR-CELLS; TRANSFORMATION KINETICS; PHASE-STABILITY; NANORODS; SURFACE; GROWTH; FABRICATION; ARRAYS; FILMS;
D O I
10.1166/jnn.2014.10016
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the formation mechanism of rutile TiO2 rods grown directly on fluorine doped tin oxide (FTO) glass by hydrothermal process at 130 degrees C. Through SEM images, we could monitor detailed nucleation and crystal growth process of TiO2 nanorods. The TiO2 nanorods started to nucleate and grow along the grain boundaries of SnO2 on FTO glass. As the reaction time increased, fine TiO2 nanorods started to encounter each other on (110) faces and merge, resulting in growth of micrometer scale rods in [001] direction. Through TEM, SAED, and XRD analyses, we propose that the nucleation of TiO2 on SnO2 grain boundaries occurs by Ostwald ripening (OR) while the merging of small TiO2 nanorods for the formation of larger rods occurs through oriented attachment (OA). The merged nanorods grow toward [001] direction to reduce surface energy.
引用
收藏
页码:8839 / 8844
页数:6
相关论文
共 50 条
  • [21] PIEZORESISTIVITY IN THE OXIDE SEMICONDUCTOR RUTILE (TIO2)
    HOLLANDER, LE
    DIESEL, TJ
    VICK, GL
    PHYSICAL REVIEW, 1960, 117 (06): : 1469 - 1472
  • [22] MECHANISM FOR HYDROGEN DIFFUSION IN TIO2 (RUTILE)
    BATES, JB
    PERKINS, RA
    WANG, JC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (03): : 212 - 212
  • [23] DIELECTRIC LOSS MECHANISM IN RUTILE (TIO2)
    JOHNSON, OW
    DEFORD, JW
    MYHRA, S
    JOURNAL OF APPLIED PHYSICS, 1972, 43 (03) : 807 - &
  • [24] N-doped rutile TiO2 nano-rods show tunable photocatalytic selectivity
    Zhang, Jun
    Fu, Wei
    Xi, Junhua
    He, Hong
    Zhao, Shichao
    Lu, Hongwei
    Ji, Zhenguo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 575 : 40 - 47
  • [25] Characterization of porphyrin nanorods on fluorine doped tin oxide glass sheets
    George, Reama C.
    Falgenhauer, Jane
    Geis, Clemens
    Nyokong, Tebello
    Schlettwein, Derck
    JOURNAL OF PORPHYRINS AND PHTHALOCYANINES, 2015, 19 (11) : 1147 - 1158
  • [26] Formation of Pt/Pb nanoparticles by electrodeposition and redox replacement cycles on fluorine doped tin oxide glass
    Yliniemi, Kirsi
    Wragg, David
    Wilson, Benjamin P.
    McMurray, H. Neil
    Worsley, David A.
    Schmuki, Patrik
    Kontturi, Kyosti
    ELECTROCHIMICA ACTA, 2013, 88 : 278 - 286
  • [27] SURFACE SEGREGATION OF SB IN DOPED TIO2 RUTILE
    GULINO, A
    CONDORELLI, GG
    FRAGALA, I
    EGDELL, RG
    APPLIED SURFACE SCIENCE, 1995, 90 (03) : 289 - 295
  • [28] EPR Study of TiO2 (Rutile) Doped with Vanadium
    A. I. Kokorin
    A. A. Sukhanov
    O. I. Gromov
    V. M. Arakelyan
    V. M. Aroutiounian
    V. K. Voronkova
    Applied Magnetic Resonance, 2016, 47 : 479 - 485
  • [29] EPR Study of TiO2 (Rutile) Doped with Vanadium
    Kokorin, A. I.
    Sukhanov, A. A.
    Gromov, O. I.
    Arakelyan, V. M.
    Aroutiounian, V. M.
    Voronkova, V. K.
    APPLIED MAGNETIC RESONANCE, 2016, 47 (05) : 479 - 485
  • [30] The electronic structure of Ni doped rutile TiO2
    Kim, Yoon-Suk
    Chung, Yong-Chae
    Lee, Kyung Sub
    JOURNAL OF ELECTROCERAMICS, 2006, 17 (2-4) : 951 - 953