ON NON-NORMAL NON-ABELIAN SUBGROUPS OF FINITE GROUPS

被引:0
|
作者
Zhang, C. [1 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
来源
关键词
Non-abelian subgroup; non-normal; conjugacy class; same order class;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that a finite group G having at most three conjugacy classes of non-normal non-abelian proper subgroups is always solvable except for G congruent to A(5), which extends Theorem 3.3 in [Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable, Acta Math. Sinica (English Series) 27 (2011) 891-896.]. Moreover, we show that a finite group G with at most three same order classes of non-normal non-abelian proper subgroups is always solvable except for G congruent to A(5).
引用
收藏
页码:659 / 663
页数:5
相关论文
共 50 条
  • [21] INFINITE NON-ABELIAN GROUPS WITH INVARIANCE CONDITION FOR INFINITE NON-ABELIAN SUBGROUPS
    CHERNIKO.SN
    DOKLADY AKADEMII NAUK SSSR, 1970, 194 (06): : 1280 - &
  • [22] FINITE GROUPS WHOSE NON-NORMAL SUBGROUPS ARE OF PRIME ORDER
    Shi, Huaguo
    Han, Zhangjia
    Jiang, Lei
    COLLOQUIUM MATHEMATICUM, 2019, 157 (02) : 309 - 316
  • [23] Finite groups with Frobenius condition for non-normal primary subgroups
    Zhang, Chi
    Wong, Dein
    Guo, Wenbin
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (12) : 5482 - 5489
  • [25] Finite groups with σ-Frobenius condition for non-normal σ-primary subgroups
    Hu, Bin
    Huang, Jianhong
    Skiba, Alexander N.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (03)
  • [26] Conjugacy classes of non-normal subgroups in finite nilpotent groups
    Fernandez-Alcober, Gustavo A.
    Legarreta, Leire
    JOURNAL OF GROUP THEORY, 2008, 11 (03) : 381 - 397
  • [27] FINITE GROUPS WITH SOME NON-ABELIAN SUBGROUPS OF NON-PRIME-POWER ORDER
    Meng, Wei
    Yao, Hailou
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2016, 47 (04): : 733 - 739
  • [28] Finite groups with some non-Abelian subgroups of non-prime-power order
    Wei Meng
    Hailou Yao
    Indian Journal of Pure and Applied Mathematics, 2016, 47 : 733 - 739
  • [29] Groups with polycyclic non-normal subgroups
    Franciosi, S
    de Giovanni, F
    Newell, ML
    ALGEBRA COLLOQUIUM, 2000, 7 (01) : 33 - 42
  • [30] GROUPS WITH RESTRICTED NON-NORMAL SUBGROUPS
    BRUNO, B
    PHILLIPS, RE
    MATHEMATISCHE ZEITSCHRIFT, 1981, 176 (02) : 199 - 221