Finite groups with σ-Frobenius condition for non-normal σ-primary subgroups

被引:0
|
作者
Hu, Bin [1 ]
Huang, Jianhong [1 ]
Skiba, Alexander N. [2 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[2] Francisk Skorina Gomel State Univ, Dept Math & Technol Programming, Gomel 246019, BELARUS
关键词
Finite group; sigma-soluble group; sigma-nilpotent group; the sigma-Frobenius condition; m(sigma)-covering subgroup;
D O I
10.1142/S0219498820500474
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let sigma = {sigma(i) vertical bar i is an element of I} be a partition of the set P of all primes and C a finite group. A group is said to be sigma-primary if it is a finite sigma(i)-group for some i. We say that a sigma(i)-subgroup H of G satisfies the sigma-Frobenius condition in G if N-G(H)/C-G(H) is a sigma(i)-group. In this paper, we determine the structure of finite groups in which every non-normal sigma-primary subgroup satisfies the sigma-Frobenius condition.
引用
收藏
页数:13
相关论文
共 50 条