RT-qPCR and ATOPlex sequencing for the sensitive detection of SARS-CoV-2 RNA for wastewater surveillance

被引:15
|
作者
Ahmed, Warish [1 ]
Bivins, Aaron [2 ]
Metcalfe, Suzanne [1 ]
Smith, Wendy J. M. [1 ]
Ziels, Ryan [3 ]
Korajkic, Asja [4 ]
McMinn, Brian [4 ]
Graber, Tyson E. [5 ]
Simpson, Stuart L. [6 ]
机构
[1] Ecosci Precinct, CSIRO Land & Water, 41 Boggo Rd, Dutton Pk, Qld 4102, Australia
[2] Louisiana State Univ, Dept Civil & Environm Engn, Baton Rouge, LA USA
[3] Univ British Columbia, Dept Civil Engn, Vancouver, BC, Canada
[4] united States Environm Protect Agcy, 26 W Martin Luther King Jr Dr, Cincinnati, OH 45268 USA
[5] Childrens Hosp Eastern Ontario Res Inst, Ottawa, ON K1H 8L1, Canada
[6] CSIRO Land & Water, Lucas Heights, NSW 2234, Australia
关键词
SARS-CoV-2; COVID-19; Detection limit; Recovery; Concentration method; Enveloped virus; Wastewater; QUANTIFY;
D O I
10.1016/j.watres.2022.118621
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
During the coronavirus disease 2019 (COVID-19) pandemic, wastewater surveillance has become an important tool for monitoring the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within communities. In particular, reverse transcription-quantitative PCR (RT-qPCR) has been used to detect and quantify SARS-CoV-2 RNA in wastewater, while monitoring viral genome mutations requires separate approaches such as deep sequencing. A high throughput sequencing platform (ATOPlex) that uses a multiplex tiled PCR-based enrichment technique has shown promise in detecting variants of concern (VOC) while also providing virus quantitation data. However, detection sensitivities of both RT-qPCR and sequencing can be impacted through losses occurring during sample handling, virus concentration, nucleic acid extraction, and RT-qPCR. Therefore, process limit of detection (PLOD) assessments are required to estimate the gene copies of target molecule to attain specific probability of detection. In this study, we compare the PLOD of four RT-qPCR assays (US CDC N1 and N2, China CDC N and ORF1ab) for detection of SARS-CoV-2 to that of ATOPlex sequencing by seeding known concentrations of gamma-irradiated SARS-CoV-2 into wastewater. Results suggest that among the RTqPCR assays, US CDC N1 was the most sensitive, especially at lower SARS-CoV-2 seed levels. However, when results from all RT-qPCR assays were combined, it resulted in greater detection rates than individual assays, suggesting that application of multiple assays is better suited for the trace detection of SARS-CoV-2 from wastewater samples. Furthermore, while ATOPlex offers a promising approach to SARS-CoV-2 wastewater surveillance, this approach appears to be less sensitive compared to RT-qPCR under the experimental conditions of this study, and may require further refinements. Nonetheless, the combination of RT-qPCR and ATOPlex may be a powerful tool to simultaneously detect/quantify SARS-CoV-2 RNA and monitor emerging VOC in wastewater samples.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [11] Influence of storage solution, temperature, assay time and concentration on RT-qPCR nucleic acid detection for SARS-CoV-2 detection of SARS-CoV-2 by the RT-qPCR
    Su, Lingxuan
    Lou, Yihan
    Li, Jiaxuan
    Mao, Haiyan
    Li, Jianhua
    Sun, Yi
    Zhou, Biaofeng
    Wu, Guangshang
    Huang, Chen
    Zhang, Yanjun
    Chen, Keda
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2024, 707
  • [12] Evaluation of process limit of detection and quantification variation of SARS-CoV-2 RT-qPCR and RT-dPCR assays for wastewater surveillance
    Ahmed, Warish
    Bivins, Aaron
    Metcalfe, Suzanne
    Smith, Wendy J.M.
    Verbyla, Matthew E.
    Symonds, Erin M.
    Simpson, Stuart L.
    Water Research, 2022, 213
  • [13] Evaluation of process limit of detection and quantification variation of SARS-CoV-2 RT-qPCR and RT-dPCR assays for wastewater surveillance
    Ahmed, Warish
    Bivins, Aaron
    Metcalfe, Suzanne
    Smith, Wendy J. M.
    Verbyla, Matthew E.
    Symonds, Erin M.
    Simpson, Stuart L.
    WATER RESEARCH, 2022, 213
  • [14] Pasteurization, storage conditions and viral concentration methods influence RT-qPCR detection of SARS-CoV-2 RNA in wastewater
    Islam, Golam
    Gedge, Ashley
    Lara-Jacobo, Linda
    Kirkwood, Andrea
    Simmons, Denina
    Desaulniers, Jean-Paul
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 821
  • [15] Sensitivity of different RT-qPCR solutions for SARS-CoV-2 detection
    Alcoba-Florez, Julia
    Gil-Campesino, Helena
    Garcia-Martinez de Artola, Diego
    Gonzalez-Montelongo, Rafaela
    Valenzuela-Fernandez, Agustin
    Ciuffreda, Laura
    Flores, Carlos
    INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2020, 99 : 190 - 192
  • [16] Overcoming Supply Shortage for SARS-CoV-2 Detection by RT-qPCR
    Barra, Gustavo Barcelos
    Santa Rita, Ticiane Henriques
    Mesquita, Pedro Goes
    Jacomo, Rafael Henriques
    Nery, Lidia Freire Abdalla
    GENES, 2021, 12 (01) : 1 - 10
  • [17] Analytical and Clinical Validation for RT-qPCR Detection of SARS-CoV-2 Without RNA Extraction
    Miranda, Jose P.
    Osorio, Javiera
    Videla, Mauricio
    Angel, Gladys
    Camponovo, Rossana
    Henriquez-Henriquez, Marcela
    FRONTIERS IN MEDICINE, 2020, 7
  • [18] Accuracy of a RT-qPCR SARS-CoV-2 detection assay without prior RNA extraction
    Beltran-Pavez, Carolina
    Alonso-Palomares, Luis A.
    Valiente-Echeverria, Fernando
    Gaggero, Aldo
    Soto-Rifo, Ricardo
    Barriga, Gonzalo P.
    JOURNAL OF VIROLOGICAL METHODS, 2021, 287
  • [19] RT-qPCR Testing of SARS-CoV-2: A Primer
    Bustin, Stephen A.
    Nolan, Tania
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (08)
  • [20] Open-source RNA extraction and RT-qPCR methods for SARS-CoV-2 detection
    Graham, Thomas G. W.
    Dugast-Darzacq, Claire
    Dailey, Gina M.
    Nguyenla, Xammy H.
    Van Dis, Erik
    Esbin, Meagan N.
    Abidi, Abrar
    Stanley, Sarah A.
    Darzacq, Xavier
    Tjian, Robert
    PLOS ONE, 2021, 16 (02):