Cellular Potts modeling of complex multicellular behaviors in tissue morphogenesis

被引:67
|
作者
Hirashima, Tsuyoshi [1 ]
Rens, Elisabeth G. [2 ,3 ]
Merks, Roeland M. H. [2 ,3 ]
机构
[1] Kyoto Univ, Inst Frontier Life & Med Sci, Sakyo Ku, 53 Kawahara, Kyoto 6068507, Japan
[2] Ctr Wiskunde & Informat, Life Sci Grp, Sci Pk 123, NL-1098 XG Amsterdam, Netherlands
[3] Leiden Univ, Math Inst, Niels Bohrweg 1, NL-2333 CA Leiden, Netherlands
关键词
blood vessel formation; cellular Potts model; cystogenesis; tube morphogenesis; DIFFERENTIAL ADHESION; KIDNEY DEVELOPMENT; BRANCHING MORPHOGENESIS; DEVELOPMENTAL BIOLOGY; CONVERGENT EXTENSION; SURFACE MECHANICS; SYSTEMS BIOLOGY; IN-VITRO; CELLS; ANGIOGENESIS;
D O I
10.1111/dgd.12358
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Mathematical modeling is an essential approach for the understanding of complex multicellular behaviors in tissue morphogenesis. Here, we review the cellular Potts model (CPM; also known as the Glazier-Graner-Hogeweg model), an effective computational modeling framework. We discuss its usability for modeling complex developmental phenomena by examining four fundamental examples of tissue morphogenesis: (i) cell sorting, (ii)cyst formation, (iii) tube morphogenesis in kidney development, and (iv) blood vessel formation. The review provides an introduction for biologists for starting simulation analysis using the CPM framework.
引用
收藏
页码:329 / 339
页数:11
相关论文
共 50 条
  • [21] Cellular Potts modeling of tumor growth, tumor invasion, and tumor evolution
    Szabo, Andras
    Merks, Roeland M. H.
    FRONTIERS IN ONCOLOGY, 2013, 3
  • [22] Cellular Potts Modeling of Matrix-Dependent Endothelial Cell Networking
    Klinger, Alexandra
    Lucia, Andrew
    Sabin, Jenny
    Jones, Peter Lloyd
    BIOPHYSICAL JOURNAL, 2009, 96 (03) : 628A - 628A
  • [23] Colloquium: Modeling the dynamics of multicellular systems: Application to tissue engineering
    Kosztin, Ioan
    Vunjak-Novakovic, Gordana
    Forgacs, Gabor
    REVIEWS OF MODERN PHYSICS, 2012, 84 (04) : 1791 - 1805
  • [24] Genetic controls and cellular behaviors in branching morphogenesis of the renal collecting system
    Costantini, Frank
    WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY, 2012, 1 (05) : 693 - 713
  • [25] Coupling intercellular molecular signalling with multicellular deformation for simulating three-dimensional tissue morphogenesis
    Okuda, Satoru
    Inoue, Yasuhiro
    Watanabe, Tadashi
    Adachi, Taiji
    INTERFACE FOCUS, 2015, 5 (02)
  • [26] REGULATION OF PLANT MORPHOGENESIS: GENERATION OF ANISOTROPY AT CELLULAR AND TISSUE LEVELS
    Baillie, Alice L.
    Fleming, Andrew J.
    ANNUAL PLANT REVIEWS ONLINE, 2019, 2 (04): : 1141 - 1176
  • [27] Mechanobiological modeling of viscoelasticity in soft tissue growth and morphogenesis
    Lin, Zhongya
    Huang, Weizhi
    Li, Shuang
    Wang, Mingfeng
    Bai, Jinshuai
    Chen, Xindong
    Feng, Xi-Qiao
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2025, 196
  • [28] Mechanochemical Modeling as an Explorative Tool to Study Tissue Morphogenesis
    Atzeni, Francesco
    Smith, Richard S.
    Aegerter, Christof
    Brunner, Damian
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 322A - 322A
  • [29] Modeling tissue morphogenesis and cancer in 3D
    Yamada, Kenneth M.
    Cukierman, Edna
    CELL, 2007, 130 (04) : 601 - 610
  • [30] The impact of intercellular communication for the generation of complex multicellular prevascularized tissue equivalents
    Heller, Martin
    Bauer, Heide-Katharina
    Schwab, Roxana
    Blatt, Sebastian
    Peters, Katharina
    Nezi-Cahn, Sandra
    Unger, Ronald E.
    Hasenburg, Annette
    Brenner, Walburgis
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2020, 108 (03) : 734 - 748