Analysis of coastal wind speed retrieval from CYGNSS mission using artificial neural network

被引:47
|
作者
Li, Xiaohui [1 ,2 ]
Yang, Dongkai [1 ]
Yang, Jingsong [2 ,3 ]
Zheng, Gang [2 ,3 ]
Han, Guoqi [4 ]
Nan, Yang [5 ]
Li, Weiqiang [6 ,7 ]
机构
[1] Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China
[2] Minist Nat Resources, Inst Oceanog 2, State Key Lab Satellite Ocean Environm Dynam, Hangzhou 310012, Peoples R China
[3] Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai 519082, Peoples R China
[4] Fisheries & Oceans Canada, Inst Ocean Sci, Sidney, BC V8L 4B2, Canada
[5] Wuhan Univ, GNSS Res Ctr, Wuhan 430079, Peoples R China
[6] CSIC, Inst Space Sci ICE, Barcelona 08193, Spain
[7] Inst Estudis Espacials Catalunya IEEC, Barcelona 08034, Spain
基金
中国国家自然科学基金;
关键词
Cyclone GNSS (CYGNSS); Sea surface wind speed; Coastal; Artificial neural network (ANN); Global navigation satellite system reflectometry (GNSS-R); REFLECTED GPS SIGNALS; SOIL-MOISTURE; OCEAN; STABILITY; ALGORITHM; ORBIT;
D O I
10.1016/j.rse.2021.112454
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper demonstrates the capability and performance of sea surface wind speed retrieval in coastal regions (within 200 km away from the coastline) using spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) data from NASA's Cyclone GNSS (CYGNSS) mission. The wind speed retrieval is based on the Artificial Neural Network (ANN). A feedforward neural network is trained with the collocated CYGNSS Level 1B (version 2.1) observables and the wind speed from European Centre for Medium-range Weather Forecast Reanalysis 5th Generation (ECMWF ERA5) data in coastal regions. An ANN model with five hidden layers and 200 neurons in each layer has been constructed and applied to the validation set for wind speed retrieval. The proposed ANN model achieves good wind speed retrieval performance in coastal regions with a bias of -0.03 m/s and a RMSE of 1.58 m/s, corresponding to an improvement of 24.4% compared to the CYGNSS Level 2 (version 2.1) wind speed product. The ANN based retrievals are also compared to the ground truth measurements from the National Data Buoy Center (NDBC) buoys, which shows a bias of -0.44 m/s and a RMSE of 1.86 m/s. Moreover, the sensitivities of the wind speed retrieval performance to different input parameters have been analyzed. Among others, the geolocation of the specular point and the swell height can provide significant contribution to the wind speed retrieval, which can provide useful reference for more generic GNSS-R wind speed retrieval algorithms in coastal regions.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] On accuracy of SAR wind speed retrieval in coastal area
    Wei Shiyan
    Yang Sheng
    Xu Dewei
    [J]. APPLIED OCEAN RESEARCH, 2020, 95
  • [42] Wind Direction Retrieval Using Support Vector Machine from CYGNSS Sea Surface Data
    Zhang, Yun
    Chen, Xu
    Meng, Wanting
    Yin, Jiwei
    Han, Yanling
    Hong, Zhonghua
    Yang, Shuhu
    [J]. REMOTE SENSING, 2021, 13 (21)
  • [43] COASTAL SEA SURFACE SALINITY RETRIEVAL ANALYSIS FROM SMAP MISSION USING MACHINE LEARNING
    Lv, YanFang
    Zhang, YiFan
    Liu, JingYi
    Zhang, LanJie
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3981 - 3983
  • [44] ANALYSIS OF WETLAND EXTENT RETRIEVAL ACCURACY USING CYGNSS
    Loria, Eric
    O'Brien, Andrew
    Zavorotny, Valery
    Lavalle, Marco
    Chew, Clara
    Shah, Rashmi
    Zuffada, Cinzia
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 8684 - 8687
  • [45] ESTIMATION OF MAXIMUM HURRICANE WIND SPEED USING SIMULATED CYGNSS MEASUREMENTS
    Said, Faozi
    Soisuvarn, Seubson
    Katzberg, Steve
    Jelenak, Zorana
    Chang, Paul S.
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 5123 - 5126
  • [46] Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind speed data
    Doucoure, Boubacar
    Agbossou, Kodjo
    Cardenas, Alben
    [J]. RENEWABLE ENERGY, 2016, 92 : 202 - 211
  • [47] Artificial Neural Network Based Wind Speed & Power Forecasting in US Wind Energy Farms
    Varanasi, Jyothi
    Tripathi, M. M.
    [J]. PROCEEDINGS OF THE FIRST IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, INTELLIGENT CONTROL AND ENERGY SYSTEMS (ICPEICES 2016), 2016,
  • [48] Long-term wind speed prediction using artificial neural network-based approaches
    Madhiarasan, Manogaran
    [J]. AIMS GEOSCIENCES, 2021, 7 (04): : 542 - 552
  • [49] Wind Speed Prediction in the area of PLTB Tolo Jeneponto South Sulawesi using Artificial Neural Network
    Gunadin, Indar Chaerah
    Safrizal
    Rosyadi, Marwan
    Siswanto, Agus
    Syukriyadin
    Muslimin, Zaenab
    Gassing
    [J]. 2020 1ST INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY, ADVANCED MECHANICAL AND ELECTRICAL ENGINEERING (ICITAMEE 2020), 2020, : 106 - 110
  • [50] Short-Term Wind Speed Prediction Using Several Artificial Neural Network Approaches in Eskisehir
    Duran, Mert Alper
    Filik, Ummuhan Basaran
    [J]. 2015 INTERNATIONAL SYMPOSIUM ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA) PROCEEDINGS, 2015, : 169 - 172