Wind Direction Retrieval Using Support Vector Machine from CYGNSS Sea Surface Data

被引:6
|
作者
Zhang, Yun [1 ]
Chen, Xu [1 ]
Meng, Wanting [2 ]
Yin, Jiwei [1 ]
Han, Yanling [1 ]
Hong, Zhonghua [1 ]
Yang, Shuhu [1 ]
机构
[1] Shanghai Ocean Univ, Shanghai Marine Intelligent Informat & Nav Remote, Shanghai 201306, Peoples R China
[2] Shanghai Spaceflight Inst IT&C & Telecommun, Shanghai 201109, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
GNSS-R; wind direction; CYGNSS; SVM; DDM; OCEAN SURFACE; SIGNALS; SCATTERING;
D O I
10.3390/rs13214451
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In view of the difficulty of wind direction retrieval in the case of the large space and time span of the global sea surface, a method of sea surface wind direction retrieval using a support vector machine (SVM) is proposed. This paper uses the space-borne global navigation satellite systems reflected signal (GNSS-R) as the remote sensing signal source. Using the Cyclone Global Navigation Satellite System (CYGNSS) satellite data, this paper selects a variety of feature parameters according to the correlation between the features of the sea surface reflection signal and the wind direction, including the Delay Doppler Map (DDM), corresponding to the CYGNSS satellite parameters and geometric feature parameters. The Radial Basis Function (RBF) is selected, and parameter optimization is performed through cross-validation based on the grid search method. Finally, the SVM model of sea surface wind direction retrieval is established. The result shows that this method has a high retrieval classification accuracy using the dataset with wind speed greater than 10 m/s, and the root mean square error (RMSE) of the retrieval result is 26.70 & DEG;.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Wind Direction Retrieval From CYGNSS L1 Level Sea Surface Data Based on Machine Learning
    Zhang, Yun
    Chen, Xu
    Meng, Wanting
    Yang, Shuhu
    Han, Yanling
    Hong, Zhonghua
    Yin, Jiwei
    Liu, Weiliang
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] Retrieval of Sea Surface Height from CYGNSS Data with Tropospheric Delay
    Li Da-wei
    Liu Yu-di
    Li Yuan-xiang
    Yu Fang-jie
    Su Yu-cheng
    Lin Shang-jin
    [J]. JOURNAL OF TROPICAL METEOROLOGY, 2021, 27 (03) : 282 - 290
  • [3] Retrieval of Sea Surface Height from CYGNSS Data with Tropospheric Delay
    李大伟
    刘宇迪
    李元祥
    于方杰
    苏昱丞
    林上金
    [J]. Journal of Tropical Meteorology, 2021, 27 (03) : 282 - 290
  • [4] WIND VECTOR AND WAVE HEIGHT RETRIEVAL IN INLAND WATERS USING CYGNSS
    Loria, Eric
    O'Brien, Andrew
    Zavorotny, Valery
    Zuffada, Cinzia
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 7029 - 7032
  • [5] High Wind Speed Inversion Model of CYGNSS Sea Surface Data Based on Machine Learning
    Zhang, Yun
    Yin, Jiwei
    Yang, Shuhu
    Meng, Wanting
    Han, Yanling
    Yan, Ziyu
    [J]. REMOTE SENSING, 2021, 13 (16)
  • [6] Sea Surface Wind Speed Retrieval Based on Empirical Orthogonal Function Analysis Using 2019-2020 CYGNSS Data
    Wu, Jianming
    Chen, Yanling
    Guo, Peng
    Wang, Xiaoya
    Hu, Xiaogong
    Wu, Mengjie
    Li, Fenghui
    Fu, Naifeng
    Hao, Yanzhen
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [7] Estimation of sea surface wind vector using RADARSAT data
    Kim, DJ
    Moon, WM
    [J]. REMOTE SENSING OF ENVIRONMENT, 2002, 80 (01) : 55 - 64
  • [8] Quality control model of CYGNSS sea surface wind speed retrieval based on ML combination
    Zhang Y.
    Zhao X.
    Yang S.
    Sun C.
    Han Y.
    Yin J.
    [J]. Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (01): : 20 - 29
  • [9] A support vector machine-based VVP wind retrieval method
    Li, Nan
    Wei, Ming
    Mu, Xiyu
    Zhao, Chang
    [J]. ATMOSPHERIC SCIENCE LETTERS, 2015, 16 (03): : 331 - 337
  • [10] Sea Surface Rainfall Detection and Intensity Retrieval Based on GNSS-Reflectometry Data From the CYGNSS Mission
    Bu, Jinwei
    Yu, Kegen
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60