On the decay problem for the Zakharov and Klein-Gordon-Zakharov systems in one dimension

被引:1
|
作者
Martinez, Maria E. [1 ]
机构
[1] Univ Chile, Dept Ingn Matemat DIM, FCFM, Santiago, Chile
关键词
NONLINEAR SCHRODINGER LIMIT; TRAVELING-WAVE SOLUTIONS; ORBITAL STABILITY; CAUCHY-PROBLEM; GLOBAL EXISTENCE; SOLITARY WAVES; WELL-POSEDNESS; ENERGY SPACE; EQUATIONS; SCATTERING;
D O I
10.1007/s00028-021-00701-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are interested in the long time asymptotic behaviour of solutions to the scalar Zakharov system iu(t) + Delta u = nu, n(tt) - Delta n = Delta vertical bar u vertical bar(2) and the Klein-Gordon-Zakharov system u(tt) - Delta u + u = -nu, n(tt) - Delta n = Delta vertical bar u vertical bar(2) in one dimension of space. For these two systems, we give two results proving decay of solutions for initial data in the energy space. The first result deals with decay over compact intervals assuming smallness and parity conditions (u odd). The second result proves decay in far field regions along curves for solutions whose growth can be dominated by an increasing C-1 function. No smallness condition is needed to prove this last result for the Zakharov system. We argue relying on the use of suitable virial identities appropriate for the equations and follow the technics of [22, 24] and [33].
引用
收藏
页码:3733 / 3763
页数:31
相关论文
共 50 条
  • [41] Explicit Multisymplectic Fourier Pseudospectral Scheme for the Klein-Gordon-Zakharov Equations
    Cai Jia-Xiang
    Liang Hua
    CHINESE PHYSICS LETTERS, 2012, 29 (08)
  • [42] On the new wave behavior to the Klein-Gordon-Zakharov equations in plasma physics
    Baskonus, H. M.
    Sulaiman, T. A.
    Bulut, H.
    INDIAN JOURNAL OF PHYSICS, 2019, 93 (03) : 393 - 399
  • [43] New exact traveling wave solutions for the Klein-Gordon-Zakharov equations
    Shang, Yadong
    Huang, Yong
    Yuan, Wenjun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (05) : 1441 - 1450
  • [44] GLOBAL SOLUTION TO THE KLEIN-GORDON-ZAKHAROV EQUATIONS WITH UNIFORM ENERGY BOUNDS
    Dong, Shijie
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (01) : 595 - 615
  • [45] WELL-POSEDNESS FOR THE CAUCHY PROBLEM OF THE KLEIN-GORDON-ZAKHAROV SYSTEM IN 2D
    Kinoshita, Shinya
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (03) : 1479 - 1504
  • [46] Local Structure-Preserving Algorithms for the Klein-Gordon-Zakharov Equation
    Wang, Jialing
    Zhou, Zhengting
    Wang, Yushun
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (03) : 1211 - 1238
  • [47] Bifurcation analysis and the travelling wave solutions of the Klein-Gordon-Zakharov equations
    Zhang, Zaiyun
    Xia, Fang-Li
    Li, Xin-Ping
    PRAMANA-JOURNAL OF PHYSICS, 2013, 80 (01): : 41 - 59
  • [48] Orbital stability of solitary waves of the coupled Klein-Gordon-Zakharov equations
    Zheng, Xiaoxiao
    Shang, Yadong
    Peng, Xiaoming
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (07) : 2623 - 2633
  • [49] Local Structure-Preserving Algorithms for the Klein-Gordon-Zakharov Equation
    Jialing Wang
    Zhengting Zhou
    Yushun Wang
    Acta Mathematica Scientia, 2023, 43 : 1211 - 1238
  • [50] Strong instability of standing waves for the nonlinear Klein-Gordon equation and the Klein-Gordon-Zakharov system
    Ohta, Masahito
    Todorova, Grozdena
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 38 (06) : 1912 - 1931