Derived p-adic heights and p-adic L-functions

被引:4
|
作者
Howard, B [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
D O I
10.1353/ajm.2004.0045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If E is an elliptic curve defined over a number field and p is a prime of good ordinary reduction for E, a theorem of Rubin relates the p-adic height pairing on the p-power Selmer group of E to the first derivative of a cohomologically defined p-adic L-function attached to E. Bertolini and Darmon have defined a sequence of "derived" p-adic heights. In this paper we give an alternative definition of the p-adic height pairing and prove a generalization of Rubin's result, relating the derived heights to higher derivatives of p-adic L-functions. We also relate degeneracies in the derived heights to the failure of the Selmer group of E over a Z(p)-extension to be "semi-simple" as an Iwasawa module, generalizing results of Perrin-Riou.
引用
收藏
页码:1315 / 1340
页数:26
相关论文
共 50 条
  • [31] A Note on Critical p-adic L-functions
    Yi Wen Ding
    [J]. Acta Mathematica Sinica, English Series, 2021, 37 : 121 - 141
  • [32] Path integrals and p-adic L-functions
    Carlson, Magnus
    Chung, Hee-Joong
    Kim, Dohyeong
    Kim, Minhyong
    Park, Jeehoon
    Yoo, Hwajong
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (06) : 1951 - 1966
  • [33] On Shalika models and p-adic L-functions
    Lennart Gehrmann
    [J]. Israel Journal of Mathematics, 2018, 226 : 237 - 294
  • [34] A Note on Critical p-adic L-functions
    Yi Wen DING
    [J]. Acta Mathematica Sinica,English Series, 2021, 37 (01) : 121 - 141
  • [35] A Note on Critical p-adic L-functions
    Ding, Yi Wen
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (01) : 121 - 141
  • [36] p-adic L-functions and classical congruences
    Lin, Xianzu
    [J]. ACTA ARITHMETICA, 2020, 194 (01) : 29 - 49
  • [37] p-adic L-functions on metaplectic groups
    Mercuri, Salvatore
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 102 (01): : 229 - 256
  • [38] On Shalika models and p-adic L-functions
    Gehrmann, Lennart
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2018, 226 (01) : 237 - 294
  • [39] Heegner cycles and p-adic L-functions
    Francesc Castella
    Ming-Lun Hsieh
    [J]. Mathematische Annalen, 2018, 370 : 567 - 628
  • [40] P-ADIC L-FUNCTIONS AND CYCLOTOMIC FIELDS
    GREENBERG, R
    [J]. NAGOYA MATHEMATICAL JOURNAL, 1975, 56 (JAN) : 61 - 77