Derived p-adic heights and p-adic L-functions

被引:4
|
作者
Howard, B [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
D O I
10.1353/ajm.2004.0045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If E is an elliptic curve defined over a number field and p is a prime of good ordinary reduction for E, a theorem of Rubin relates the p-adic height pairing on the p-power Selmer group of E to the first derivative of a cohomologically defined p-adic L-function attached to E. Bertolini and Darmon have defined a sequence of "derived" p-adic heights. In this paper we give an alternative definition of the p-adic height pairing and prove a generalization of Rubin's result, relating the derived heights to higher derivatives of p-adic L-functions. We also relate degeneracies in the derived heights to the failure of the Selmer group of E over a Z(p)-extension to be "semi-simple" as an Iwasawa module, generalizing results of Perrin-Riou.
引用
收藏
页码:1315 / 1340
页数:26
相关论文
共 50 条
  • [21] Derived p-adic heights
    Bertolini, M
    Darmon, H
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1995, 117 (06) : 1517 - 1554
  • [22] p-adic L-functions and unitary completions of representations of p-adic reductive groups
    Emerton, M
    [J]. DUKE MATHEMATICAL JOURNAL, 2005, 130 (02) : 353 - 392
  • [23] ORDINARY p-ADIC EISENSTEIN SERIES AND p-ADIC L-FUNCTIONS FOR UNITARY GROUPS
    Hsieh, Ming-Lun
    [J]. ANNALES DE L INSTITUT FOURIER, 2011, 61 (03) : 987 - 1059
  • [24] p-adic polylogarithms and p-adic Hecke L-functions for totally real fields
    Bannai, Kenichi
    Hagihara, Kei
    Yamada, Kazuki
    Yamamoto, Shuji
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (791): : 53 - 87
  • [25] ON THE NON-VANISHING OF p-ADIC HEIGHTS ON CM ABELIAN VARIETIES, AND THE ARITHMETIC OF KATZ p-ADIC L-FUNCTIONS
    Burungale, Ashay A.
    Disegni, Daniel
    [J]. ANNALES DE L INSTITUT FOURIER, 2020, 70 (05) : 2077 - 2101
  • [26] VALUES OF P-ADIC L-FUNCTIONS AT POSITIVE INTEGERS AND P-ADIC LOG MULTIPLE GAMMA FUNCTIONS
    IMAI, H
    [J]. TOHOKU MATHEMATICAL JOURNAL, 1993, 45 (04) : 505 - 510
  • [27] Heegner cycles and p-adic L-functions
    Castella, Francesc
    Hsieh, Ming-Lun
    [J]. MATHEMATISCHE ANNALEN, 2018, 370 (1-2) : 567 - 628
  • [28] COMPUTATION OF THE ZEROS OF P-ADIC L-FUNCTIONS
    ERNVALL, R
    METSANKYLA, T
    [J]. MATHEMATICS OF COMPUTATION, 1992, 58 (198) : 815 - 830
  • [29] A p-adic integral for the reciprocal of L-functions
    Gelbart, Stephen
    Miller, Stephen D.
    Panchishkin, Alexei
    Shahidi, Freydoon
    [J]. AUTOMORPHIC FORMS AND RELATED GEOMETRY: ASSESSING THE LEGACY OF I.I. PIATETSKI-SHAPIRO, 2014, 614 : 53 - +
  • [30] A Note on Critical p-adic L-functions
    Yi Wen Ding
    [J]. Acta Mathematica Sinica, English Series, 2021, 37 : 121 - 141