Adaptive control charts for skew-normal distribution

被引:9
|
作者
Chiang, Jyun-You [1 ]
Tsai, Tzong-Ru [2 ]
Su, Nan-Cheng [3 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Stat, Chengdu 610074, Sichuan, Peoples R China
[2] Tamkang Univ, Dept Stat, New Taipei 25137, Taiwan
[3] Natl Taipei Univ, Dept Stat, New Taipei 23741, Taiwan
关键词
adaptive control charts; average run length; cumulative sum charts; exponentially weighted moving average charts; Markov chain approach; VARIABLE SAMPLE-SIZE; AVERAGE CONTROL SCHEMES; ECONOMIC DESIGN; (X)OVER-BAR CHARTS; INTERVALS;
D O I
10.1002/qre.2274
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The standard Shewhart-type X chart, named FSS-X chart, has been widely used to detect the mean shift of process by implementing fixed sample and sampling frequency schemes. The FSS-X chart could be sensitive to the normality assumption and is inefficient to catch small or moderate shifts in the process mean. To monitor nonnormally distributed variables, Li et al [Commun Stat-Theory Meth. 2014; 43(23): 4908-4924] extended the study of Tsai [Int J Reliab Qual Saf Eng. 2007; 14(1): 49-63] to provide a new skew-normal FSS-X (SN FSS-X) chart with exact control limits for the SN distribution. To enhance the sensitivity of the SN FSS-X chart on detecting small or moderate mean shifts in the process, adaptive X charts with variable sampling interval (VSI), variable sample size (VSS), and variable sample size and sampling interval (VSSI) are introduced for the SN distribution in this study. The proposed adaptive control charts include the normality adaptive charts as special cases. Simulation results show that all the proposed SN VSI-X, SN VSS-X, and SN VSSI-X charts outperform the SN FSSX chart on detecting small or moderate shifts in the process mean. The impact of model misspecification on using the proposed adaptive charts and the sample size impact for using the FSS-X chart to monitor the mean of SN data are also discussed. An example about single hue value in polarizer manufacturing process is used to illustrate the applications of the proposed adaptive charts.
引用
收藏
页码:589 / 608
页数:20
相关论文
共 50 条
  • [21] Bimodality based on the generalized skew-normal distribution
    Venegas, Osvaldo
    Salinas, Hugo S.
    Gallardo, Diego I.
    Bolfarine, Heleno
    Gomez, Hector W.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (01) : 156 - 181
  • [22] The Exponential-Centred Skew-Normal Distribution
    Martinez-Florez, Guillermo
    Barrera-Causil, Carlos
    Marmolejo-Ramos, Fernando
    SYMMETRY-BASEL, 2020, 12 (07):
  • [23] Multivariate measures of skewness for the skew-normal distribution
    Balakrishnan, N.
    Scarpa, Bruno
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 104 (01) : 73 - 87
  • [24] A new generalized Balakrishnan skew-normal distribution
    Hasanalipour, P.
    Sharafi, M.
    STATISTICAL PAPERS, 2012, 53 (01) : 219 - 228
  • [25] A new generalized Balakrishnan skew-normal distribution
    P. Hasanalipour
    M. Sharafi
    Statistical Papers, 2012, 53 : 219 - 228
  • [26] Some properties of the unified skew-normal distribution
    Arellano-Valle, Reinaldo B.
    Azzalini, Adelchi
    STATISTICAL PAPERS, 2022, 63 (02) : 461 - 487
  • [27] Skew-Normal Approximation to the Negative Binomial Distribution
    Chang, Ching-Hui
    Lin, Jyh-Jiuan
    Chiang, Miao-Chen
    IMSCI '08: 2ND INTERNATIONAL MULTI-CONFERENCE ON SOCIETY, CYBERNETICS AND INFORMATICS, VOL III, PROCEEDINGS, 2008, : 147 - +
  • [28] A generalized skew two-piece skew-normal distribution
    A. Jamalizadeh
    A. R. Arabpour
    N. Balakrishnan
    Statistical Papers, 2011, 52 : 431 - 446
  • [29] On the correlation structures of multivariate skew-normal distribution
    Kaarik, Ene
    Kaarik, Meelis
    Maadik, Inger-Helen
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2016, 20 (01): : 83 - 100
  • [30] A note on the likelihood and moments of the skew-normal distribution
    Martínez, Eliseo H.
    Varela, Héctor
    Gómez, Héctor W.
    Bolfarine, Heleno
    SORT, 2008, 32 (01): : 57 - 65