Bimodality based on the generalized skew-normal distribution

被引:15
|
作者
Venegas, Osvaldo [1 ]
Salinas, Hugo S. [2 ]
Gallardo, Diego I. [2 ]
Bolfarine, Heleno [3 ]
Gomez, Hector W. [4 ]
机构
[1] Univ Catolica Temuco, Fac Ingn, Dept Ciencias Matemat & Fis, Temuco, Chile
[2] Univ Atacama, Fac Ingn, Dept Matemat, Copiapo, Chile
[3] Univ Sao Paulo, Dept Estat, IME, Sao Paulo, Brazil
[4] Univ Antofagasta, Fac Ciencias Basicas, Dept Matemat, Antofagasta, Chile
基金
巴西圣保罗研究基金会;
关键词
Asymmetry; bimodality; kurtosis; maximum likelihood estimation; skew-symmetric distributions; EXPONENTIAL POWER DISTRIBUTION; FISHER INFORMATION; SYMMETRIC DISTRIBUTIONS; INFERENCE; LIKELIHOOD; MODELS;
D O I
10.1080/00949655.2017.1381698
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper focuses on the development of a new extension of the generalized skew-normal distribution introduced in Gomez et al. [Generalized skew-normal models: properties and inference. Statistics. 2006;40(6):495-505]. To produce the generalization a new parameter is introduced, the signal of which has the flexibility of yielding unimodal as well as bimodal distributions. We study its properties, derive a stochastic representation and state some expressions that facilitate moments derivation. Maximum likelihood is implemented via the EM algorithm which is based on the stochastic representation derived. We show that the Fisher information matrix is singular and discuss ways of getting round this problem. An illustration using real data reveals that the model can capture well special data features such as bimodality and asymmetry.
引用
收藏
页码:156 / 181
页数:26
相关论文
共 50 条
  • [1] A study of generalized skew-normal distribution
    Huang, Wen-Jang
    Su, Nan-Cheng
    Gupta, Arjun K.
    [J]. STATISTICS, 2013, 47 (05) : 942 - 953
  • [2] A new generalized Balakrishnan skew-normal distribution
    Hasanalipour, P.
    Sharafi, M.
    [J]. STATISTICAL PAPERS, 2012, 53 (01) : 219 - 228
  • [3] A new generalized Balakrishnan skew-normal distribution
    P. Hasanalipour
    M. Sharafi
    [J]. Statistical Papers, 2012, 53 : 219 - 228
  • [4] A generalized skew two-piece skew-normal distribution
    Jamalizadeh, A.
    Arabpour, A. R.
    Balakrishnan, N.
    [J]. STATISTICAL PAPERS, 2011, 52 (02) : 431 - 446
  • [5] A Generalization of the Skew-Normal Distribution: The Beta Skew-Normal
    Mameli, Valentina
    Musio, Monica
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (12) : 2229 - 2244
  • [6] A generalized skew two-piece skew-normal distribution
    A. Jamalizadeh
    A. R. Arabpour
    N. Balakrishnan
    [J]. Statistical Papers, 2011, 52 : 431 - 446
  • [7] A two-parameter generalized skew-normal distribution
    Jamalizadeh, A.
    Behboodian, J.
    Balakrishnan, N.
    [J]. STATISTICS & PROBABILITY LETTERS, 2008, 78 (13) : 1722 - 1726
  • [8] Generalized skew-normal distribution model of partition curves based on quartile
    Fan, Minqiang
    Luo, Canjin
    [J]. INTERNATIONAL JOURNAL OF COAL PREPARATION AND UTILIZATION, 2022, 42 (07) : 2219 - 2231
  • [9] Characterization of the skew-normal distribution
    Arjun K. Gupta
    Truc T. Nguyen
    Jose Almer T. Sanqui
    [J]. Annals of the Institute of Statistical Mathematics, 2004, 56 : 351 - 360
  • [10] THE SKEW-NORMAL DISTRIBUTION IN SPC
    Figueiredo, Fernanda
    Ivette Gomes, M.
    [J]. REVSTAT-STATISTICAL JOURNAL, 2013, 11 (01) : 83 - 104