Bimodality based on the generalized skew-normal distribution

被引:15
|
作者
Venegas, Osvaldo [1 ]
Salinas, Hugo S. [2 ]
Gallardo, Diego I. [2 ]
Bolfarine, Heleno [3 ]
Gomez, Hector W. [4 ]
机构
[1] Univ Catolica Temuco, Fac Ingn, Dept Ciencias Matemat & Fis, Temuco, Chile
[2] Univ Atacama, Fac Ingn, Dept Matemat, Copiapo, Chile
[3] Univ Sao Paulo, Dept Estat, IME, Sao Paulo, Brazil
[4] Univ Antofagasta, Fac Ciencias Basicas, Dept Matemat, Antofagasta, Chile
基金
巴西圣保罗研究基金会;
关键词
Asymmetry; bimodality; kurtosis; maximum likelihood estimation; skew-symmetric distributions; EXPONENTIAL POWER DISTRIBUTION; FISHER INFORMATION; SYMMETRIC DISTRIBUTIONS; INFERENCE; LIKELIHOOD; MODELS;
D O I
10.1080/00949655.2017.1381698
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper focuses on the development of a new extension of the generalized skew-normal distribution introduced in Gomez et al. [Generalized skew-normal models: properties and inference. Statistics. 2006;40(6):495-505]. To produce the generalization a new parameter is introduced, the signal of which has the flexibility of yielding unimodal as well as bimodal distributions. We study its properties, derive a stochastic representation and state some expressions that facilitate moments derivation. Maximum likelihood is implemented via the EM algorithm which is based on the stochastic representation derived. We show that the Fisher information matrix is singular and discuss ways of getting round this problem. An illustration using real data reveals that the model can capture well special data features such as bimodality and asymmetry.
引用
收藏
页码:156 / 181
页数:26
相关论文
共 50 条
  • [31] Some properties of the unified skew-normal distribution
    Arellano-Valle, Reinaldo B.
    Azzalini, Adelchi
    [J]. STATISTICAL PAPERS, 2022, 63 (02) : 461 - 487
  • [32] Skew-Normal Approximation to the Negative Binomial Distribution
    Chang, Ching-Hui
    Lin, Jyh-Jiuan
    Chiang, Miao-Chen
    [J]. IMSCI '08: 2ND INTERNATIONAL MULTI-CONFERENCE ON SOCIETY, CYBERNETICS AND INFORMATICS, VOL III, PROCEEDINGS, 2008, : 147 - +
  • [33] On the correlation structures of multivariate skew-normal distribution
    Kaarik, Ene
    Kaarik, Meelis
    Maadik, Inger-Helen
    [J]. ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2016, 20 (01): : 83 - 100
  • [34] A Bayesian interpretation of the multivariate skew-normal distribution
    Liseo, B
    Loperfido, N
    [J]. STATISTICS & PROBABILITY LETTERS, 2003, 61 (04) : 395 - 401
  • [35] The additive logistic skew-normal distribution on the simplex
    Mateu-Figueras, G
    Pawlowsky-Glahn, V
    Barceló-Vidal, C
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2005, 19 (03) : 205 - 214
  • [36] A Sample Selection Model with Skew-normal Distribution
    Ogundimu, Emmanuel O.
    Hutton, Jane L.
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2016, 43 (01) : 172 - 190
  • [37] Directed mutation by means of the Skew-Normal Distribution
    Berlik, S
    [J]. Computational Intelligence, Theory and Applications, 2005, : 35 - 50
  • [38] The skew-normal distribution and related multivariate families
    Azzalini, A
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (02) : 159 - 188
  • [39] Monitoring the asymmetry parameter of a skew-normal distribution
    Kim, Hyun Jun
    Lee, Jaeheon
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2024, 31 (01) : 129 - 142
  • [40] The centred parametrization for the multivariate skew-normal distribution
    Arellano-Valle, Reinaldo B.
    Azzalini, Adelchi
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (07) : 1362 - 1382