Carbon and Oxygen Coordinating Atoms Adjust Transition Metal Single-Atom Catalysts Based On Boron Nitride Monolayers for Highly Efficient CO2 Electroreduction

被引:20
|
作者
Wang, Wenjie [1 ]
Li, Da [1 ]
Cui, Tian [2 ]
机构
[1] Jilin Univ, Coll Phys, State Key Lab Superhard Mat, Changchun 130012, Peoples R China
[2] Ningbo Univ, Sch Phys Sci & Technol, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金;
关键词
electrochemical reduction; carbon cycle; carbon dioxide; coordination engineering; boron nitride; EVANS-POLANYI RELATION; FINDING SADDLE-POINTS; ELECTROCHEMICAL REDUCTION; ELECTROCATALYST; NANOPARTICLES; SELECTIVITY; NANOSHEETS;
D O I
10.1021/acsami.1c04580
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Although single-atom catalysts (SACs) with transition metal-nitrogen complexes have been studied widely, investigations that use light-element atoms to adjust the coordination environment of the central metal atoms in metal-nitrogen complexes are still rare but show enormous potential for various electrocatalytic reactions. Herein, we design novel SACs based on monolayer BN adjusted by B, C, or O coordinating atoms as catalysts for the CO2 reduction reaction (CRR). These SACs are denoted as M@BN_D (BN = monolayer boron nitride; D = B, C, or O atom; M = Co, Cr, Fe, Mn, Mo, Pd, Pt, Ru, V, W, Ni, Zn, Zr, Ag, Au, Cu, or Ti atom) and are investigated as CRR catalysts using density functional theory calculations. Among these structures, we identified some promising candidate catalysts for CRR with impressive low limiting potential (U-L): Pt@BN_C with a U-L of -0.18 for the product CH4 and Co@BN_C and Au@BN_O with U-L of -0.41 and -0.37 V, respectively, for the product CH3OH. In particular, Pt@BN_C shows a remarkable reduction in U-L for the product CH4 compared to any existing catalysts, synthesized or predicted. In addition, the ultralow U-L for CRR on Pt@BN_C was derived from the unique bonding feature between the single metal atom and adsorbates and the modulation of ionic interactions induced by the coordination effect of the C atom.
引用
收藏
页码:18934 / 18943
页数:10
相关论文
共 50 条
  • [41] Highly efficient and stable indium single-atom catalysts for electrocatalytic reduction of CO2 to formate
    Xu, Dafu
    Xu, Yan
    Wang, Haixia
    Qiu, Xiaoqing
    CHEMICAL COMMUNICATIONS, 2022, 58 (18) : 3007 - 3010
  • [42] Catalytic Mechanisms and Design Principles for Single-Atom Catalysts in Highly Efficient CO2 Conversion
    Gong, Lele
    Zhang, Detao
    Lin, Chun-Yu
    Zhu, Yonghao
    Shen, Yang
    Zhang, Jing
    Han, Xiao
    Zhang, Lipeng
    Xia, Zhenhai
    ADVANCED ENERGY MATERIALS, 2019, 9 (44)
  • [43] Single-atom catalysts on supported silicomolybdic acid for CO2 electroreduction: a DFT prediction
    Zhao, Congcong
    Su, Xiaofang
    Wang, Shuo
    Tian, Yu
    Yan, Likai
    Su, Zhongmin
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (11) : 6178 - 6186
  • [44] Machine learning accelerates the screening of single-atom catalysts towards CO2 electroreduction
    Shi, Yaxin
    Liang, Zhiqin
    APPLIED CATALYSIS A-GENERAL, 2024, 676
  • [45] Single-Atom Catalysts Supported on the Graphene/Graphdiyne Heterostructure for Effective CO2 Electroreduction
    Yang, Yun
    Yang, Ziqian
    Zhang, Canyu
    Zhou, Jiao
    Liu, Shixi
    Cao, Qiue
    INORGANIC CHEMISTRY, 2022, 61 (30) : 12012 - 12022
  • [46] Single-Atom catalysts supported by nanographene networks for efficient CO2 electroreduction: A first-principles study
    Wang, Zhilong
    Abdelsalam, Hazem
    Teleb, Nahed H.
    Abd-Elkader, Omar H.
    Sakr, Mahmoud A. S.
    Liu, Yushen
    Zhang, Qinfang
    SURFACES AND INTERFACES, 2024, 55
  • [47] Efficient and Selective Electroreduction of CO2 by Single-Atom Catalyst Two-Dimensional TM-Pc Monolayers
    Liu, Jin-Hang
    Yang, Li-Ming
    Ganz, Eric
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (11): : 15494 - 15502
  • [48] Fluorine-Tuned Carbon-Based Nickel Single-Atom Catalysts for Scalable and Highly Efficient CO2 Electrocatalytic Reduction
    Wang, Yuyang
    Zhu, Peng
    Wang, Ruoyu
    Matthews, Kevin C.
    Xie, Minghao
    Wang, Maoyu
    Qiu, Chang
    Liu, Yijin
    Zhou, Hua
    Warner, Jamie H.
    Liu, Yuanyue
    Wang, Haotian
    Yu, Guihua
    ACS NANO, 2024, 18 (39) : 26751 - 26758
  • [49] Nb2S2C Monolayers with Transition Metal Atoms Embedded at the S Vacancy Are Promising Single-Atom Catalysts for CO Oxidation
    Li, Manman
    Li, Tianchun
    Jing, Yu
    ACS OMEGA, 2023, : 31051 - 31059
  • [50] Metal single-atom coordinated graphitic carbon nitride as an efficient catalyst for CO oxidation
    Wang, Shiyan
    Li, Jiaqi
    Li, Qiang
    Bai, Xiaowan
    Wang, Jinlan
    NANOSCALE, 2020, 12 (01) : 364 - 371