Carbon and Oxygen Coordinating Atoms Adjust Transition Metal Single-Atom Catalysts Based On Boron Nitride Monolayers for Highly Efficient CO2 Electroreduction

被引:20
|
作者
Wang, Wenjie [1 ]
Li, Da [1 ]
Cui, Tian [2 ]
机构
[1] Jilin Univ, Coll Phys, State Key Lab Superhard Mat, Changchun 130012, Peoples R China
[2] Ningbo Univ, Sch Phys Sci & Technol, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金;
关键词
electrochemical reduction; carbon cycle; carbon dioxide; coordination engineering; boron nitride; EVANS-POLANYI RELATION; FINDING SADDLE-POINTS; ELECTROCHEMICAL REDUCTION; ELECTROCATALYST; NANOPARTICLES; SELECTIVITY; NANOSHEETS;
D O I
10.1021/acsami.1c04580
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Although single-atom catalysts (SACs) with transition metal-nitrogen complexes have been studied widely, investigations that use light-element atoms to adjust the coordination environment of the central metal atoms in metal-nitrogen complexes are still rare but show enormous potential for various electrocatalytic reactions. Herein, we design novel SACs based on monolayer BN adjusted by B, C, or O coordinating atoms as catalysts for the CO2 reduction reaction (CRR). These SACs are denoted as M@BN_D (BN = monolayer boron nitride; D = B, C, or O atom; M = Co, Cr, Fe, Mn, Mo, Pd, Pt, Ru, V, W, Ni, Zn, Zr, Ag, Au, Cu, or Ti atom) and are investigated as CRR catalysts using density functional theory calculations. Among these structures, we identified some promising candidate catalysts for CRR with impressive low limiting potential (U-L): Pt@BN_C with a U-L of -0.18 for the product CH4 and Co@BN_C and Au@BN_O with U-L of -0.41 and -0.37 V, respectively, for the product CH3OH. In particular, Pt@BN_C shows a remarkable reduction in U-L for the product CH4 compared to any existing catalysts, synthesized or predicted. In addition, the ultralow U-L for CRR on Pt@BN_C was derived from the unique bonding feature between the single metal atom and adsorbates and the modulation of ionic interactions induced by the coordination effect of the C atom.
引用
收藏
页码:18934 / 18943
页数:10
相关论文
共 50 条
  • [21] A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction
    Jiaqi Feng
    Hongshuai Gao
    Lirong Zheng
    Zhipeng Chen
    Shaojuan Zeng
    Chongyang Jiang
    Haifeng Dong
    Licheng Liu
    Suojiang Zhang
    Xiangping Zhang
    Nature Communications, 11
  • [22] Efficient electroreduction of CO2 by single-atom catalysts two-dimensional metal hexahydroxybenzene frameworks: A theoretical study
    Xing, Guanru
    Cheng, Lin
    Li, Kai
    Gao, Yan
    Tang, Hao
    Wang, Ying
    Wu, Zhijian
    APPLIED SURFACE SCIENCE, 2021, 550
  • [23] Catalytic Potential of Post-Transition Metal Doped Graphene-Based Single-Atom Catalysts for the CO2 Electroreduction Reaction
    Lambie, Stephanie
    Low, Jian Liang
    Gaston, Nicola
    Paulus, Beate
    CHEMPHYSCHEM, 2022, 23 (08)
  • [24] Bimetallic Ni/Co single-atom catalysts guided by an energy descriptor for efficient CO2 electroreduction to syngas
    Qiu, Yuye
    Zheng, Tao
    Liu, Rui
    Liu, Jingjing
    Xue, Xiangdong
    Liu, Wengang
    Liu, Jian
    INORGANIC CHEMISTRY FRONTIERS, 2025,
  • [25] Universal Principle to Describe Reactivity and Selectivity of CO2 Electroreduction on Transition Metals and Single-Atom Catalysts
    Guan, Xin
    Zhao, Chenxu
    Liu, Xin
    Liu, Shanping
    Gao, Wang
    Jiang, Qing
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (47): : 25898 - 25906
  • [26] Harnessing single-atom catalysts for CO2 electroreduction: a review of recent advances
    Chen, Chang
    Li, Jiazhan
    Tan, Xin
    Zhang, Yu
    Li, Yifan
    He, Chang
    Xu, Zhiyuan
    Zhang, Chao
    Chen, Chen
    EES CATALYSIS, 2024, 2 (01): : 71 - 93
  • [27] Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements
    Back, Seoin
    Lim, Juhyung
    Kim, Na-Young
    Kim, Yong-Hyun
    Jung, Yousung
    CHEMICAL SCIENCE, 2017, 8 (02) : 1090 - 1096
  • [28] Bi/Zn Dual Single-Atom Catalysts for Electroreduction of CO2 to Syngas
    Meng, Lingzhe
    Zhang, Erhuan
    Peng, Haoyu
    Wang, Yu
    Wang, Dingsheng
    Rong, Hongpan
    Zhang, Jiatao
    CHEMCATCHEM, 2022, 14 (07)
  • [29] Coordination environment engineering on nickel single-atom catalysts for CO2 electroreduction
    Ma, Mengbo
    Li, Fuhua
    Tang, Qing
    NANOSCALE, 2021, 13 (45) : 19133 - 19143
  • [30] Spontaneous Metal-Chelation Strategy for Highly Dense Ni Single-Atom Catalysts with Asymmetric Coordination in CO2 Electroreduction
    Kim, Jae Hak
    Kim, Jaehyun
    Ma, Joonhee
    Cho, Jin Hyuk
    Jeong, Jaemin
    Iimura, Soshi
    Jang, Ho Won
    Kim, Soo Young
    SMALL, 2025, 21 (05)