Label-free quality control and identification of human keratinocyte stem cells by deep learning-based automated cell tracking

被引:19
|
作者
Hirose, Takuya [1 ]
Kotoku, Jun'ichi [1 ]
Toki, Fujio [2 ]
Nishimura, Emi K. [2 ,3 ]
Nanba, Daisuke [2 ]
机构
[1] Teikyo Univ, Grad Sch Med Care & Technol, Tokyo, Japan
[2] Tokyo Med & Dent Univ TMDU, Med Res Inst, Dept Stem Cell Biol, Tokyo, Japan
[3] Univ Tokyo, Inst Med Sci, Div Aging & Regenerat, Tokyo, Japan
基金
日本学术振兴会;
关键词
cell motion analysis; deep learning; keratinocyte stem cells; quality control; stem cell cultures; EPIDERMAL-GROWTH-FACTOR; MIGRATION; DYNAMICS; THERAPY;
D O I
10.1002/stem.3371
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Stem cell-based products have clinical and industrial applications. Thus, there is a need to develop quality control methods to standardize stem cell manufacturing. Here, we report a deep learning-based automated cell tracking (DeepACT) technology for noninvasive quality control and identification of cultured human stem cells. The combination of deep learning-based cascading cell detection and Kalman filter algorithm-based tracking successfully tracked the individual cells within the densely packed human epidermal keratinocyte colonies in the phase-contrast images of the culture. DeepACT rapidly analyzed the motion of individual keratinocytes, which enabled the quantitative evaluation of keratinocyte dynamics in response to changes in culture conditions. Furthermore, DeepACT can distinguish keratinocyte stem cell colonies from non-stem cell-derived colonies by analyzing the spatial and velocity information of cells. This system can be widely applied to stem cell cultures used in regenerative medicine and provides a platform for developing reliable and noninvasive quality control technology.
引用
收藏
页码:1091 / 1100
页数:10
相关论文
共 50 条
  • [31] Morphology-based identification of human induced pluripotent stem cell-derived endothelial cells by automated deep learning
    Lachmann, M. J.
    Kusumoto, D.
    Kunihiro, T.
    Yuasa, S.
    Fukuda, K.
    EUROPEAN HEART JOURNAL, 2018, 39 : 390 - 390
  • [32] Label-Free Identification of White Blood Cells Using Machine Learning
    Nassar, Mariam
    Doan, Minh
    Filby, Andrew
    Wolkenhauer, Olaf
    Fogg, Darin K.
    Piasecka, Justyna
    Thornton, Catherine A.
    Carpenter, Anne E.
    Summers, Huw D.
    Rees, Paul
    Hennig, Holger
    CYTOMETRY PART A, 2019, 95A (08) : 836 - 842
  • [33] Label-Free Determination of the Cell Cycle Phase in Human Embryonic Stem Cells by Raman Microspectroscopy
    Konorov, Stanislav O.
    Schulze, H. Georg
    Piret, James M.
    Blades, Michael W.
    Turner, Robin F. B.
    ANALYTICAL CHEMISTRY, 2013, 85 (19) : 8996 - 9002
  • [34] Label-free biomarkers of human embryonic stem cell differentiation to hepatocytes
    Tsikritsis, Dimitrios
    Shi, Hu
    Wang, Yuan
    Velugotla, Srinivas
    Srsen, Vlastimil
    Elfick, Alistair
    Downes, Andrew
    CYTOMETRY PART A, 2016, 89A (06) : 575 - 584
  • [35] Deep Transfer Learning-Based Automated Identification of Bird Song
    Das, Nabanita
    Padhy, Neelamadhab
    Dey, Nilanjan
    Bhattacharya, Sudipta
    Tavares, Joao Manuel R. S.
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2023, 8 (04): : 33 - 45
  • [36] Deep learning-based virtual H& E staining from label-free autofluorescence lifetime images
    Qiang Wang
    Ahsan R. Akram
    David A. Dorward
    Sophie Talas
    Basil Monks
    Chee Thum
    James R. Hopgood
    Malihe Javidi
    Marta Vallejo
    npj Imaging, 2 (1):
  • [37] Label-Free Fault Detection Scheme for Inverters of PV Systems: Deep Reinforcement Learning-Based Dynamic Threshold
    Seo, Giup
    Yoon, Seungwook
    Song, Junyoung
    Srivastava, Ekta
    Hwang, Euiseok
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [38] Deep learning-based analysis of deep ultraviolet (UV) microscopy images for label-free, point-of-care hematological analysis
    Kaza, Nischita
    Chiou, Lyndie R.
    Lenk, Max H.
    Law, James J. M.
    Mabry, Kelly
    Robles, Francisco E.
    OPTICAL DIAGNOSTICS AND SENSING XXIV:TOWARD POINT-OF-CARE DIAGNOSTICS, 2024, 12850
  • [39] Deep learning-based label-free imaging of lymphatics and aqueous veins in the eye using optical coherence tomography
    Gong, Peijun
    Tang, Xiaolan
    Chen, Junying
    You, Haijun
    Wang, Yuxing
    Yu, Paula K.
    Yu, Dao-Yi
    Cense, Barry
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [40] Deep Learning-Based Automated Cell Detection-Facilitated Meat Quality Evaluation
    Zheng, Hui
    Zhao, Nan
    Xu, Saifei
    He, Jin
    Ospina, Ricardo
    Qiu, Zhengjun
    Liu, Yufei
    FOODS, 2024, 13 (14)