Label-free quality control and identification of human keratinocyte stem cells by deep learning-based automated cell tracking

被引:19
|
作者
Hirose, Takuya [1 ]
Kotoku, Jun'ichi [1 ]
Toki, Fujio [2 ]
Nishimura, Emi K. [2 ,3 ]
Nanba, Daisuke [2 ]
机构
[1] Teikyo Univ, Grad Sch Med Care & Technol, Tokyo, Japan
[2] Tokyo Med & Dent Univ TMDU, Med Res Inst, Dept Stem Cell Biol, Tokyo, Japan
[3] Univ Tokyo, Inst Med Sci, Div Aging & Regenerat, Tokyo, Japan
基金
日本学术振兴会;
关键词
cell motion analysis; deep learning; keratinocyte stem cells; quality control; stem cell cultures; EPIDERMAL-GROWTH-FACTOR; MIGRATION; DYNAMICS; THERAPY;
D O I
10.1002/stem.3371
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Stem cell-based products have clinical and industrial applications. Thus, there is a need to develop quality control methods to standardize stem cell manufacturing. Here, we report a deep learning-based automated cell tracking (DeepACT) technology for noninvasive quality control and identification of cultured human stem cells. The combination of deep learning-based cascading cell detection and Kalman filter algorithm-based tracking successfully tracked the individual cells within the densely packed human epidermal keratinocyte colonies in the phase-contrast images of the culture. DeepACT rapidly analyzed the motion of individual keratinocytes, which enabled the quantitative evaluation of keratinocyte dynamics in response to changes in culture conditions. Furthermore, DeepACT can distinguish keratinocyte stem cell colonies from non-stem cell-derived colonies by analyzing the spatial and velocity information of cells. This system can be widely applied to stem cell cultures used in regenerative medicine and provides a platform for developing reliable and noninvasive quality control technology.
引用
收藏
页码:1091 / 1100
页数:10
相关论文
共 50 条
  • [21] Pseudo-nuclear staining of cells by deep learning improves the accuracy of automated cell counting in a label-free cellular population
    Tsuzuki, Yuji
    Sanami, Sho
    Sugimoto, Kenji
    Fujita, Satoshi
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2021, 131 (02) : 213 - 218
  • [22] Application of Automated Quality Control in Smart Factories - A Deep Learning-based Approach
    Mandapaka, Subbalakshmi
    Diaz, Catalina
    Irisson, Hasbanny
    Akundi, Aditya
    Lopez, Viviana
    Timmer, Douglas
    2023 IEEE INTERNATIONAL SYSTEMS CONFERENCE, SYSCON, 2023,
  • [23] Angio-Net: deep learning-based label-free detection and morphometric analysis of in vitro angiogenesis
    Kim, Suryong
    Lee, Jungseub
    Ko, Jihoon
    Park, Seonghyuk
    Lee, Seung-Ryeol
    Kim, Youngtaek
    Lee, Taeseung
    Choi, Sunbeen
    Kim, Jiho
    Kim, Wonbae
    Chung, Yoojin
    Kwon, Oh-Heum
    Jeon, Noo Li
    LAB ON A CHIP, 2024, 24 (04) : 751 - 763
  • [24] Deep learning-based light scattering microfluidic cytometry for label-free acute lymphocytic leukemia classification
    Sun, Jing
    Wang, Lan
    Liu, Qiao
    Tarnok, Attila
    Su, Xuantao
    BIOMEDICAL OPTICS EXPRESS, 2020, 11 (11): : 6674 - 6686
  • [25] Label-free deep learning-based species classification of bacteria imaged by phase-contrast microscopy
    Hallstrom, Erik
    Kandavalli, Vinodh
    Ranefall, Petter
    Elf, Johan
    Wahlby, Carolina
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (11)
  • [26] Adhesion strength-based, label-free isolation of human pluripotent stem cells
    Singh, Ankur
    Suri, Shalu
    Lee, Ted
    Chilton, Jamie M.
    Cooke, Marissa T.
    Chen, Weiqiang
    Fu, Jianping
    Stice, Steven L.
    Lu, Hang
    McDevitt, Todd C.
    Garcia, Andres J.
    NATURE METHODS, 2013, 10 (05) : 438 - +
  • [27] Adhesion strength-based, label-free isolation of human pluripotent stem cells
    Singh A.
    Suri S.
    Lee T.
    Chilton J.M.
    Cooke M.T.
    Chen W.
    Fu J.
    Stice S.L.
    Lu H.
    McDevitt T.C.
    García A.J.
    Nature Methods, 2013, 10 (5) : 438 - 444
  • [28] ADHESIVE SIGNATURE-BASED, LABEL-FREE ISOLATION OF HUMAN PLURIPOTENT STEM CELLS
    Singh, Ankur
    Suri, Shalu
    Lee, Ted T.
    Chilton, Jamie M.
    Stice, Steve L.
    Lu, Hang
    McDevitt, Todd C.
    Garcia, Andres J.
    PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE, PTS A AND B, 2012, : 313 - 314
  • [29] Deep learning for label-free nuclei detection from implicit phase information of mesenchymal stem cells
    Zhang, Zhengyun
    Leong, Kim Whye
    Van Vliet, Krystyn
    Barbastathis, George
    Ravasio, Andrea
    BIOMEDICAL OPTICS EXPRESS, 2021, 12 (03): : 1683 - 1706
  • [30] Development of a noninvasive and label-free imaging system for human interfollicular epidermal stem cells based on cell morphology
    Miyachi, Katsuma
    Shiraishi, Takeru
    Sanada, Ayumi
    Ishii, Yoshie
    Hirose, Osamu
    Yamada, Takaaki
    Igarashi, Toshio
    Hasegawa, Seiji
    Arima, Masaru
    Iwata, Yohei
    Sugiura, Kazumitsu
    Akamatsu, Hirohiko
    SKIN RESEARCH AND TECHNOLOGY, 2024, 30 (08)