Label-free quality control and identification of human keratinocyte stem cells by deep learning-based automated cell tracking

被引:19
|
作者
Hirose, Takuya [1 ]
Kotoku, Jun'ichi [1 ]
Toki, Fujio [2 ]
Nishimura, Emi K. [2 ,3 ]
Nanba, Daisuke [2 ]
机构
[1] Teikyo Univ, Grad Sch Med Care & Technol, Tokyo, Japan
[2] Tokyo Med & Dent Univ TMDU, Med Res Inst, Dept Stem Cell Biol, Tokyo, Japan
[3] Univ Tokyo, Inst Med Sci, Div Aging & Regenerat, Tokyo, Japan
基金
日本学术振兴会;
关键词
cell motion analysis; deep learning; keratinocyte stem cells; quality control; stem cell cultures; EPIDERMAL-GROWTH-FACTOR; MIGRATION; DYNAMICS; THERAPY;
D O I
10.1002/stem.3371
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Stem cell-based products have clinical and industrial applications. Thus, there is a need to develop quality control methods to standardize stem cell manufacturing. Here, we report a deep learning-based automated cell tracking (DeepACT) technology for noninvasive quality control and identification of cultured human stem cells. The combination of deep learning-based cascading cell detection and Kalman filter algorithm-based tracking successfully tracked the individual cells within the densely packed human epidermal keratinocyte colonies in the phase-contrast images of the culture. DeepACT rapidly analyzed the motion of individual keratinocytes, which enabled the quantitative evaluation of keratinocyte dynamics in response to changes in culture conditions. Furthermore, DeepACT can distinguish keratinocyte stem cell colonies from non-stem cell-derived colonies by analyzing the spatial and velocity information of cells. This system can be widely applied to stem cell cultures used in regenerative medicine and provides a platform for developing reliable and noninvasive quality control technology.
引用
收藏
页码:1091 / 1100
页数:10
相关论文
共 50 条
  • [1] Label-free identification of human keratinocyte stem cells by deep learning-based quantitative cell motion analysis
    Nanba, D.
    Hirose, T.
    Toki, F.
    Nishimura, E. K.
    Kotoku, J.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2019, 139 (09) : S316 - S316
  • [2] Tracking the Differentiation Status of Human Neural Stem Cells through Label-Free Raman Spectroscopy and Machine Learning-Based Analysis
    Geng, Junnan
    Zhang, Wei
    Chen, Cheng
    Zhang, Han
    Zhou, Anhong
    Huang, Yu
    ANALYTICAL CHEMISTRY, 2021, 93 (30) : 10453 - 10461
  • [3] Machine learning-based detection of label-free cancer stem-like cell fate
    Chambost, Alexis J.
    Berabez, Nabila
    Cochet-Escartin, Olivier
    Ducray, Francois
    Gabut, Mathieu
    Isaac, Caroline
    Martel, Sylvie
    Idbaih, Ahmed
    Rousseau, David
    Meyronet, David
    Monnier, Sylvain
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [4] Machine learning-based detection of label-free cancer stem-like cell fate
    Alexis J. Chambost
    Nabila Berabez
    Olivier Cochet-Escartin
    François Ducray
    Mathieu Gabut
    Caroline Isaac
    Sylvie Martel
    Ahmed Idbaih
    David Rousseau
    David Meyronet
    Sylvain Monnier
    Scientific Reports, 12
  • [5] Deep Learning in Label-free Cell Classification
    Claire Lifan Chen
    Ata Mahjoubfar
    Li-Chia Tai
    Ian K. Blaby
    Allen Huang
    Kayvan Reza Niazi
    Bahram Jalali
    Scientific Reports, 6
  • [6] Deep Learning in Label-free Cell Classification
    Chen, Claire Lifan
    Mahjoubfar, Ata
    Tai, Li-Chia
    Blaby, Ian K.
    Huang, Allen
    Niazi, Kayvan Reza
    Jalali, Bahram
    SCIENTIFIC REPORTS, 2016, 6
  • [7] Deep learning-based virtual staining, segmentation, and classification in label-free photoacoustic histology of human specimens
    Yoon, Chiho
    Park, Eunwoo
    Misra, Sampa
    Kim, Jin Young
    Baik, Jin Woo
    Kim, Kwang Gi
    Jung, Chan Kwon
    Kim, Chulhong
    LIGHT-SCIENCE & APPLICATIONS, 2024, 13 (01)
  • [8] Deep learning enables label-free tracking of heterogeneous subpopulations
    Jost, Tyler
    Gardner, Andrea
    Brock, Amy
    CANCER RESEARCH, 2023, 83 (07)
  • [9] Label-free identification of microplastics in human cells: dark-field microscopy and deep learning study
    Ilnur Ishmukhametov
    Läysän Nigamatzyanova
    Gӧlnur Fakhrullina
    Rawil Fakhrullin
    Analytical and Bioanalytical Chemistry, 2022, 414 : 1297 - 1312
  • [10] Label-free identification of microplastics in human cells: dark-field microscopy and deep learning study
    Ishmukhametov, Ilnur
    Nigamatzyanova, Laysan
    Fakhrullina, Golnur
    Fakhrullin, Rawil
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2022, 414 (03) : 1297 - 1312