Simultaneous parameter identification and discrimination of the nonparametric structure of hybrid semi-parametric models

被引:25
|
作者
Willis, Mark J. [1 ]
von Stosch, Moritz [1 ]
机构
[1] Univ Newcastle, Sch Chem Engn & Adv Mat, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
关键词
Hybrid semi-parametric modelling; Sparse regression; Mixed integer linear programming; Fed-batch (bio) chemical reactors; INCREMENTAL IDENTIFICATION; KNOWLEDGE; SYSTEMS;
D O I
10.1016/j.compchemeng.2017.05.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, a hybrid semi-parametric modelling framework implemented using mixed integer linear programming (MILP) is used to extract (coupled) nonlinear ordinary differential equations (ODEs) from process data. Applied to fed-batch (bio) chemical reaction syftems, unknown (or partially known) system connectivity and/or reaction kinetics are represented using a multivariate rational function (MRF) superstructure. The MRF's are embedded within an ODE framework which is used to incorporate known system model characteristics. Using derivative estimation, the ODEs are decoupled and a MILP algorithm is then used to identify appropriate constitutive model terms using sparse regression. Superstructure sparsity is promoted using a L-0- pseudo norm penalty, i.e. the cardinality of the model parameter vector, enabling the simultaneous yet decoupled identification of the parameters and model structure discrimination. Using simulated data, two case studies demonstrate a principled approach to hybrid model development, distilling unknown elements of (bio) chemical model structures from process data. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:366 / 376
页数:11
相关论文
共 50 条
  • [1] Identification of semi-parametric hybrid process models
    Yang, Aidong
    Martin, Elaine
    Morris, Julian
    COMPUTERS & CHEMICAL ENGINEERING, 2011, 35 (01) : 63 - 70
  • [2] Nonparametric estimation in semi-parametric univariate mixture models
    Cruz-Medina, IR
    Hettmansperger, TP
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (07) : 513 - 524
  • [3] Evaluating the parametric, semi-parametric and nonparametric models for reliability in aircraft braking system
    Kianoosh Fathi Vajargah
    Mathematical Sciences, 2021, 15 : 259 - 267
  • [4] Evaluating the parametric, semi-parametric and nonparametric models for reliability in aircraft braking system
    Vajargah, Kianoosh Fathi
    MATHEMATICAL SCIENCES, 2021, 15 (03) : 259 - 267
  • [5] Simultaneous estimation for semi-parametric multi-index models
    Wu, Wenbo
    Hilafu, Haileab
    Xue, Yuan
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (12) : 2354 - 2372
  • [6] Identification of the 1PL Model with Guessing Parameter: Parametric and Semi-parametric Results
    San Martin, Ernesto
    Rolin, Jean-Marie
    Castro, Luis M.
    PSYCHOMETRIKA, 2013, 78 (02) : 341 - 379
  • [7] Identification of the 1PL Model with Guessing Parameter: Parametric and Semi-parametric Results
    Ernesto San Martín
    Jean-Marie Rolin
    Luis M. Castro
    Psychometrika, 2013, 78 : 341 - 379
  • [8] Parametric and Semi-Parametric Efficient Tests for Parameter Instability
    Lee, Dong Jin
    JOURNAL OF TIME SERIES ANALYSIS, 2016, 37 (04) : 451 - 475
  • [9] Semi-parametric estimation for ARCH models
    Alzghool, Raed
    Al-Zubi, Loai M.
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (01) : 367 - 373
  • [10] A semi-parametric approach to robust parameter design
    Pickle, Stephanie M.
    Robinson, Timothy J.
    Birch, Jeffrey B.
    Anderson-Cook, Christine M.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (01) : 114 - 131