Identification of the Key Parameters for Computational Offloading in Multi-Access Edge Computing

被引:1
|
作者
Singh, Raghubir [1 ,2 ]
Armour, Simon [1 ,2 ]
Khan, Aftab [3 ]
Sooriyabandara, Mahesh [3 ]
Oikonomou, George [1 ,2 ]
机构
[1] Univ Bristol, Commun Syst & Networks Res Grp, Bristol, Avon, England
[2] Univ Bristol, Dept Elect & Elect Engn, Bristol, Avon, England
[3] Toshiba Res Europe Ltd, Telecommun Res Lab, Bristol, Avon, England
来源
基金
英国工程与自然科学研究理事会;
关键词
Computation Offloading; Multi-Access Edge Computing; CPU Workloads; Energy Usage;
D O I
10.1109/IEEECloudSummit48914.2020.00026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Computational offloading is a strategy by which mobile device (MD) users can access the superior processing power of a Multi-Access Edge Computing (MEC) server network. This paper investigates the impact of CPU workloads (on both the user and server-side) on overall processing times and energy consumption as well as We provide a comprehensive mathematical model using two applications of varying complexity are tested on a range of cases. Our findings show that the relationship between the CPU workloads on the MD and MEC server and the link speed between them are the crucial parameters that determine the success of offloading in the MEC network. We demonstrate that a certain threshold of link speed is required for shorter completion times by offloading, and the MD CPU workload determines it. Furthermore, MD energy usage can be reduced considerably by offloading for varying complexity applications provided a sufficiently link speed is available to the MEC network.
引用
下载
收藏
页码:131 / 136
页数:6
相关论文
共 50 条
  • [41] 6G-Empowered Offloading for Realtime Applications in Multi-Access Edge Computing
    Huang, Hui
    Ye, Qiang
    Zhou, Yitong
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (03): : 1311 - 1325
  • [42] Adaptive Computation Offloading Policy for Multi-Access Edge Computing in Heterogeneous Wireless Networks
    Ke, Hongchang
    Wang, Hui
    Sun, Weijia
    Sun, Hongbin
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (01): : 289 - 305
  • [43] Intelligent Offloading in Multi-Access Edge Computing: A State-of-the-Art Review and Framework
    Cao, Bin
    Zhang, Long
    Li, Yun
    Feng, Daquan
    Cao, Wei
    IEEE COMMUNICATIONS MAGAZINE, 2019, 57 (03) : 56 - 62
  • [44] Computation Offloading for Multi-Access Mobile Edge Computing in Ultra-Dense Networks
    Guo, Hongzhi
    Liu, Jiajia
    Zhang, Jie
    IEEE COMMUNICATIONS MAGAZINE, 2018, 56 (08) : 14 - 19
  • [45] Offloading Image Recognition Processing for Care Robots to FPGA on Multi-access Edge Computing
    Mori, Hayato
    Okazaki, Eisuke
    Nagahashi, Gai
    Sato, Mikiko
    Ohkawa, Takeshi
    Sugaya, Midori
    2023 INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE TECHNOLOGY, ICFPT, 2023, : 270 - 271
  • [46] A Socially-Aware Hybrid Computation Offloading Framework for Multi-Access Edge Computing
    Yu, Shuai
    Dab, Boutheina
    Movahedi, Zeinab
    Langar, Rami
    Wang, Li
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2020, 19 (06) : 1247 - 1259
  • [47] Resource Allocation and Computation Offloading for Multi-Access Edge Computing With Fronthaul and Backhaul Constraints
    Chen, Jun
    Chang, Zheng
    Guo, Xijuan
    Li, Renchuan
    Han, Zhu
    Hamalainen, Timo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (08) : 8037 - 8049
  • [48] Intelligent Offloading for Multi-Access Edge Computing: A New Actor-Critic Approach
    Liu, Kai-Hsiang
    Liao, Wanjiun
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [49] An Incentive-Aware Job Offloading Control Framework for Multi-Access Edge Computing
    Li, Lingxiang
    Quek, Tony Q. S.
    Ren, Ju
    Yang, Howard H.
    Chen, Zhi
    Zhang, Yaoxue
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2021, 20 (01) : 63 - 75
  • [50] An online joint optimization approach for task offloading and caching in multi-access edge computing
    Xuemei Yang
    Hong Luo
    Yan Sun
    Wireless Networks, 2025, 31 (3) : 2637 - 2651