Identification of the Key Parameters for Computational Offloading in Multi-Access Edge Computing

被引:1
|
作者
Singh, Raghubir [1 ,2 ]
Armour, Simon [1 ,2 ]
Khan, Aftab [3 ]
Sooriyabandara, Mahesh [3 ]
Oikonomou, George [1 ,2 ]
机构
[1] Univ Bristol, Commun Syst & Networks Res Grp, Bristol, Avon, England
[2] Univ Bristol, Dept Elect & Elect Engn, Bristol, Avon, England
[3] Toshiba Res Europe Ltd, Telecommun Res Lab, Bristol, Avon, England
来源
基金
英国工程与自然科学研究理事会;
关键词
Computation Offloading; Multi-Access Edge Computing; CPU Workloads; Energy Usage;
D O I
10.1109/IEEECloudSummit48914.2020.00026
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Computational offloading is a strategy by which mobile device (MD) users can access the superior processing power of a Multi-Access Edge Computing (MEC) server network. This paper investigates the impact of CPU workloads (on both the user and server-side) on overall processing times and energy consumption as well as We provide a comprehensive mathematical model using two applications of varying complexity are tested on a range of cases. Our findings show that the relationship between the CPU workloads on the MD and MEC server and the link speed between them are the crucial parameters that determine the success of offloading in the MEC network. We demonstrate that a certain threshold of link speed is required for shorter completion times by offloading, and the MD CPU workload determines it. Furthermore, MD energy usage can be reduced considerably by offloading for varying complexity applications provided a sufficiently link speed is available to the MEC network.
引用
下载
收藏
页码:131 / 136
页数:6
相关论文
共 50 条
  • [21] Computation Offloading in Multi-Access Edge Computing: A Multi-Task Learning Approach
    Yang, Bo
    Cao, Xuelin
    Bassey, Joshua
    Li, Xiangfang
    Qian, Lijun
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2021, 20 (09) : 2745 - 2762
  • [22] Online Learning in Matching Games for Task Offloading in Multi-Access Edge Computing
    Simon, Bernd
    Mehler, Helena
    Klein, Anja
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 3270 - 3276
  • [23] Decentralized Offloading Strategies Based on Reinforcement Learning for Multi-Access Edge Computing
    Hu, Chunyang
    Li, Jingchen
    Shi, Haobin
    Ning, Bin
    Gu, Qiong
    INFORMATION, 2021, 12 (09)
  • [24] A computation offloading strategy for multi-access edge computing based on DQUIC protocol
    Yang, Peng
    Ma, Ruochen
    Yi, Meng
    Zhang, Yifan
    Li, Bing
    Bai, Zijian
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (12): : 18285 - 18318
  • [25] Secure Offloading in NOMA-Enabled Multi-Access Edge Computing Networks
    Zheng, Tong-Xing
    Chen, Xin
    Wen, Yating
    Zhang, Ning
    Ng, Derrick Wing Kwan
    Al-Dhahir, Naofal
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (04) : 2152 - 2165
  • [26] MCTS-Enhanced Hybrid Offloading for Aerial Multi-Access Edge Computing
    Xu, Jianwen
    Ota, Kaoru
    Dong, Mianxiong
    Zhou, Huan
    IEEE WIRELESS COMMUNICATIONS, 2021, 28 (05) : 82 - 87
  • [27] Secrecy Offloading Rate Maximization for Multi-Access Mobile Edge Computing Networks
    Zhao, Mingxiong
    Bao, Huiqi
    Yin, Li
    Yao, Jianping
    Quek, Tony Q. S.
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (12) : 3800 - 3804
  • [28] Balanced multi-access edge computing offloading strategy in the Internet of things scenario
    Ye, Dan
    Wang, Xiaogang
    Hou, Jin
    COMPUTER COMMUNICATIONS, 2022, 194 : 399 - 410
  • [29] An Online Learning Algorithm for Distributed Task Offloading in Multi-Access Edge Computing
    Sun, Zhenfeng
    Nakhai, Mohammad Reza
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 (68) : 3090 - 3102
  • [30] A comprehensive review on internet of things task offloading in multi-access edge computing
    Dayong, Wang
    Abu Bakar, Kamalrulnizam Bin
    Isyaku, Babangida
    Eisa, Taiseer Abdalla Elfadil
    Abdelmaboud, Abdelzahir
    HELIYON, 2024, 10 (09)