Efficient RNA isoform identification and quantification from RNA-Seq data with network flows

被引:46
|
作者
Bernard, Elsa [1 ,2 ,3 ]
Jacob, Laurent [4 ]
Mairal, Julien [5 ]
Vert, Jean-Philippe [1 ,2 ,3 ]
机构
[1] Mines ParisTech, Ctr Computat Biol, F-77300 Fontainebleau, France
[2] Inst Curie, F-75248 Paris, France
[3] INSERM, U900, F-75248 Paris, France
[4] Univ Lyon 1, INRA, CNRS, Lab Biometrie & Biol Evolut,UMR5558, Villeurbanne, France
[5] INRIA Grenoble Rhone Alpes, LEAR Project Team, F-38330 Montbonnot St Martin, France
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
ABUNDANCE ESTIMATION; TRANSCRIPTOME; EXPRESSION; SELECTION; ALGORITHM; DISCOVERY; GENOME; GRAPHS; LASSO;
D O I
10.1093/bioinformatics/btu317
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Several state-of-the-art methods for isoform identification and quantification are based on l(1)-regularized regression, such as the Lasso. However, explicitly listing the-possibly exponentially-large set of candidate transcripts is intractable for genes with many exons. For this reason, existing approaches using the l(1)-penalty are either restricted to genes with few exons or only run the regression algorithm on a small set of preselected isoforms. Results: We introduce a new technique called FlipFlop, which can efficiently tackle the sparse estimation problem on the full set of candidate isoforms by using network flow optimization. Our technique removes the need of a preselection step, leading to better isoform identification while keeping a low computational cost. Experiments with synthetic and real RNA-Seq data confirm that our approach is more accurate than alternative methods and one of the fastest available.
引用
下载
收藏
页码:2447 / 2455
页数:9
相关论文
共 50 条
  • [41] Transcriptome assembly and quantification from Ion Torrent RNA-Seq data
    Mangul, Serghei
    Caciula, Adrian
    Al Seesi, Sahar
    Brinza, Dumitru
    Mondoiu, Ion
    Zelikovsky, Alex
    BMC GENOMICS, 2014, 15
  • [42] iReckon: Simultaneous isoform discovery and abundance estimation from RNA-seq data
    Mezlini, Aziz M.
    Smith, Eric J. M.
    Fiume, Marc
    Buske, Orion
    Savich, Gleb L.
    Shah, Sohrab
    Aparicio, Sam
    Chiang, Derek Y.
    Goldenberg, Anna
    Brudno, Michael
    GENOME RESEARCH, 2013, 23 (03) : 519 - 529
  • [43] Modeling Alternative Splicing Variants from RNA-Seq Data with Isoform Graphs
    Beretta, Stefano
    Bonizzoni, Paola
    Della Vedova, Gianluca
    Pirola, Yuri
    Rizzi, Raffaella
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2014, 21 (01) : 16 - 40
  • [44] Quantification of co-transcriptional splicing from RNA-Seq data
    Herzel, Lydia
    Neugebauer, Karla M.
    METHODS, 2015, 85 : 36 - 43
  • [45] Transcriptome assembly and quantification from Ion Torrent RNA-Seq data
    Serghei Mangul
    Adrian Caciula
    Sahar Al Seesi
    Dumitru Brinza
    Ion Mӑndoiu
    Alex Zelikovsky
    BMC Genomics, 15
  • [46] RNA-seq: impact of RNA degradation on transcript quantification
    Romero, Irene Gallego
    Pai, Athma A.
    Tung, Jenny
    Gilad, Yoav
    BMC BIOLOGY, 2014, 12
  • [47] RNA-seq: impact of RNA degradation on transcript quantification
    Irene Gallego Romero
    Athma A Pai
    Jenny Tung
    Yoav Gilad
    BMC Biology, 12
  • [48] Identification and visualization of differential isoform expression in RNA-seq time series
    Nueda, Maria Jose
    Martorell-Marugan, Jordi
    Marti, Cristina
    Tarazona, Sonia
    Conesa, Ana
    BIOINFORMATICS, 2018, 34 (03) : 524 - 526
  • [49] Statistical inferences for isoform expression in RNA-Seq
    Jiang, Hui
    Wong, Wing Hung
    BIOINFORMATICS, 2009, 25 (08) : 1026 - 1032
  • [50] MSIQ: JOINT MODELING OF MULTIPLE RNA-SEQ SAMPLES FOR ACCURATE ISOFORM QUANTIFICATION
    Li, Wei Vivian
    Zhao, Anqi
    Zhang, Shihua
    Li, Jingyi Jessica
    ANNALS OF APPLIED STATISTICS, 2018, 12 (01): : 510 - 539