Identification and visualization of differential isoform expression in RNA-seq time series

被引:13
|
作者
Nueda, Maria Jose [1 ]
Martorell-Marugan, Jordi [2 ]
Marti, Cristina [2 ]
Tarazona, Sonia [2 ,3 ]
Conesa, Ana [2 ,4 ]
机构
[1] Univ Alicante, Math Dept, Alicante 03690, Spain
[2] Ctr Invest Principe Felipe, Genom Gene Express Lab, Valencia 42012, Spain
[3] Univ Politecn Valencia, Appl Stat Operat Res & Qual Dept, Valencia 46020, Spain
[4] Univ Florida, Microbiol & Cell Sci Dept, Inst Food & Agr Res, Gainesville, FL 32611 USA
关键词
D O I
10.1093/bioinformatics/btx578
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: As sequencing technologies improve their capacity to detect distinct transcripts of the same gene and to address complex experimental designs such as longitudinal studies, there is a need to develop statistical methods for the analysis of isoform expression changes in time series data. Results: Iso-maSigPro is a new functionality of the R package maSigPro for transcriptomics time series data analysis. Iso-maSigPro identifies genes with a differential isoform usage across time. The package also includes new clustering and visualization functions that allow grouping of genes with similar expression patterns at the isoform level, as well as those genes with a shift in major expressed isoform. Availability and implementation: The package is freely available under the LGPL license from the Bioconductor web site. Contact: mj.nueda@ua.es or aconesa@ufl.edu Supplementary information: Supplementary data are available at Bioinformatics online.
引用
下载
收藏
页码:524 / 526
页数:3
相关论文
共 50 条
  • [1] Statistical inferences for isoform expression in RNA-Seq
    Jiang, Hui
    Wong, Wing Hung
    BIOINFORMATICS, 2009, 25 (08) : 1026 - 1032
  • [2] Statistical modeling of isoform splicing dynamics from RNA-seq time series data
    Huang, Yuanhua
    Sanguinetti, Guido
    BIOINFORMATICS, 2016, 32 (19) : 2965 - 2972
  • [3] A benchmarking of workflows for detecting differential splicing and differential expression at isoform level in human RNA-seq studies
    Merino, Gabriela A.
    Conesa, Ana
    Fernandez, Elmer A.
    BRIEFINGS IN BIOINFORMATICS, 2019, 20 (02) : 471 - 481
  • [4] Time Series Expression Analyses Using RNA-seq: A Statistical Approach
    Oh, Sunghee
    Song, Seongho
    Grabowski, Gregory
    Zhao, Hongyu
    Noonan, James P.
    BIOMED RESEARCH INTERNATIONAL, 2013, 2013
  • [5] Differential expression in RNA-seq: A matter of depth
    Tarazona, Sonia
    Garcia-Alcalde, Fernando
    Dopazo, Joaquin
    Ferrer, Alberto
    Conesa, Ana
    GENOME RESEARCH, 2011, 21 (12) : 2213 - 2223
  • [6] Blind spots of quantitative RNA-seq: the limits for assessing abundance, differential expression, and isoform switching
    Rehrauer, Hubert
    Opitz, Lennart
    Tan, Ge
    Sieverling, Lina
    Schlapbach, Ralph
    BMC BIOINFORMATICS, 2013, 14
  • [7] Blind spots of quantitative RNA-seq: the limits for assessing abundance, differential expression, and isoform switching
    Hubert Rehrauer
    Lennart Opitz
    Ge Tan
    Lina Sieverling
    Ralph Schlapbach
    BMC Bioinformatics, 14
  • [8] Detection and visualization of differential splicing in RNA-Seq data with JunctionSeq
    Hartley, Stephen W.
    Mullikin, James C.
    NUCLEIC ACIDS RESEARCH, 2016, 44 (15) : e127
  • [9] ARH-seq: identification of differential splicing in RNA-seq data
    Rasche, Axel
    Lienhard, Matthias
    Yaspo, Marie-Laure
    Lehrach, Hans
    Herwig, Ralf
    NUCLEIC ACIDS RESEARCH, 2014, 42 (14) : e110
  • [10] Power analysis for RNA-Seq differential expression studies
    Yu, Lianbo
    Fernandez, Soledad
    Brock, Guy
    BMC BIOINFORMATICS, 2017, 18