Identification and visualization of differential isoform expression in RNA-seq time series

被引:13
|
作者
Nueda, Maria Jose [1 ]
Martorell-Marugan, Jordi [2 ]
Marti, Cristina [2 ]
Tarazona, Sonia [2 ,3 ]
Conesa, Ana [2 ,4 ]
机构
[1] Univ Alicante, Math Dept, Alicante 03690, Spain
[2] Ctr Invest Principe Felipe, Genom Gene Express Lab, Valencia 42012, Spain
[3] Univ Politecn Valencia, Appl Stat Operat Res & Qual Dept, Valencia 46020, Spain
[4] Univ Florida, Microbiol & Cell Sci Dept, Inst Food & Agr Res, Gainesville, FL 32611 USA
关键词
D O I
10.1093/bioinformatics/btx578
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: As sequencing technologies improve their capacity to detect distinct transcripts of the same gene and to address complex experimental designs such as longitudinal studies, there is a need to develop statistical methods for the analysis of isoform expression changes in time series data. Results: Iso-maSigPro is a new functionality of the R package maSigPro for transcriptomics time series data analysis. Iso-maSigPro identifies genes with a differential isoform usage across time. The package also includes new clustering and visualization functions that allow grouping of genes with similar expression patterns at the isoform level, as well as those genes with a shift in major expressed isoform. Availability and implementation: The package is freely available under the LGPL license from the Bioconductor web site. Contact: mj.nueda@ua.es or aconesa@ufl.edu Supplementary information: Supplementary data are available at Bioinformatics online.
引用
下载
收藏
页码:524 / 526
页数:3
相关论文
共 50 条
  • [41] Identification and control for the effects of bioinformatic globin depletion on human RNA-seq differential expression analysis
    Sheerin, Dylan
    Lakay, Francisco
    Esmail, Hanif
    Kinnear, Craig
    Sansom, Bianca
    Glanzmann, Brigitte
    Wilkinson, Robert J.
    Ritchie, Matthew E.
    Coussens, Anna K.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [42] VIPER: Visualization Pipeline for RNA-seq, a Snakemake workflow for efficient and complete RNA-seq analysis
    MacIntosh Cornwell
    Mahesh Vangala
    Len Taing
    Zachary Herbert
    Johannes Köster
    Bo Li
    Hanfei Sun
    Taiwen Li
    Jian Zhang
    Xintao Qiu
    Matthew Pun
    Rinath Jeselsohn
    Myles Brown
    X. Shirley Liu
    Henry W. Long
    BMC Bioinformatics, 19
  • [43] VIPER: Visualization Pipeline for RNA-seq, a Snakemake workflow for efficient and complete RNA-seq analysis
    Cornwell, MacIntosh
    Vangala, Mahesh
    Taing, Len
    Herbert, Zachary
    Koester, Johannes
    Li, Bo
    Sun, Hanfei
    Li, Taiwen
    Zhang, Jian
    Qiu, Xintao
    Pun, Matthew
    Jeselsohn, Rinath
    Brown, Myles
    Liu, X. Shirley
    Long, Henry W.
    BMC BIOINFORMATICS, 2018, 19
  • [44] Identification and control for the effects of bioinformatic globin depletion on human RNA-seq differential expression analysis
    Dylan Sheerin
    Francisco Lakay
    Hanif Esmail
    Craig Kinnear
    Bianca Sansom
    Brigitte Glanzmann
    Robert J. Wilkinson
    Matthew E. Ritchie
    Anna K. Coussens
    Scientific Reports, 13
  • [45] IUTA: a tool for effectively detecting differential isoform usage from RNA-Seq data
    Niu, Liang
    Huang, Weichun
    Umbach, David M.
    Li, Leping
    BMC GENOMICS, 2014, 15
  • [46] Visualization and analysis of RNA-Seq assembly graphs
    Nazarie, Fahmi W.
    Shih, Barbara
    Angus, Tim
    Barnett, Mark W.
    Chen, Sz-Hau
    Summers, Kim M.
    Klein, Karsten
    Faulkner, Geoffrey J.
    Saini, Harpreet K.
    Watson, Mick
    van Dongen, Stijn
    Enright, Anton J.
    Freeman, Tom C.
    NUCLEIC ACIDS RESEARCH, 2019, 47 (14) : 7262 - 7275
  • [47] RNAseqViewer: visualization tool for RNA-Seq data
    Roge, Xavier
    Zhang, Xuegong
    BIOINFORMATICS, 2014, 30 (06) : 891 - 892
  • [48] Simultaneous Isoform Discovery and Quantification from RNA-Seq
    Hiller D.
    Wong W.H.
    Statistics in Biosciences, 2013, 5 (1) : 100 - 118
  • [49] Combining Multiple RNA-Seq Data Analysis Algorithms Using Machine Learning Improves Differential Isoform Expression Analysis
    Dimopoulos, Alexandros C.
    Koukoutegos, Konstantinos
    Psomopoulos, Fotis E.
    Moulos, Panagiotis
    METHODS AND PROTOCOLS, 2021, 4 (04)
  • [50] Detecting differential expression from RNA-seq data with expression measurement uncertainty
    Zhang, Li
    Chen, Songcan
    Liu, Xuejun
    FRONTIERS OF COMPUTER SCIENCE, 2015, 9 (04) : 652 - 663