A Comparative Study on Machine Learning algorithms for Knowledge Discovery

被引:1
|
作者
Suseela, Siddesh Sambasivam [1 ]
Feng, Yang [2 ]
Mao, Kezhi [3 ]
机构
[1] Nanyang Technol Univ, IHPC, A STAR, Singapore, Singapore
[2] ASTAR, IHPC, Singapore, Singapore
[3] Nanyang Technol Univ, Singapore, Singapore
关键词
Knowledge discovery; symbolic regression; Sparse regression; Machine Learning;
D O I
10.1109/ICARCV57592.2022.10004302
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For centuries, the process of formulating new knowledge from observations has driven scientific discoveries. With rapid advancements in machine learning, it is natural to question the possibility of automating knowledge discovery in the scientific field. A benchmark task for automated knowledge discovery is called symbolic regression. The task aims to predict a mathematical equation that best describes the observational data. The advancements in symbolic regression have significant potential to aid research in understanding unexplored systems' dynamics and governing properties. However, the combinatorial nature of the problem makes it an expensive and challenging problem to solve efficiently. Several types of symbolic regression algorithms exist, from genetic programming and sparse regression to deep generative models. However, no survey collates these prominent algorithms. Therefore, this paper aims to summarize key research works in symbolic regression and perform a comparative study to understand the strength and limitations of each method. Finally, we highlight the challenges in the current methods and future research directions in the application of machine learning in knowledge discovery.
引用
收藏
页码:131 / 136
页数:6
相关论文
共 50 条
  • [31] Recognition of Emotion Intensities Using Machine Learning Algorithms: A Comparative Study
    Mehta, Dhwani
    Siddiqui, Mohammad Faridul Haque
    Javaid, Ahmad Y.
    SENSORS, 2019, 19 (08):
  • [32] Comparative Study of Machine Learning Algorithms using a Breast Cancer Dataset
    El-Shair, Zaid A.
    Sanchez-Perez, Luis A.
    Rawashdeh, Samir A.
    2020 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY (EIT), 2020, : 500 - 508
  • [33] A Comparative Study on Machine Learning Algorithms for Assessing Energy Efficiency of Buildings
    Egwim, Christian Nnaemeka
    Egunjobi, Oluwapelumi Oluwaseun
    Gomes, Alvaro
    Alaka, Hafiz
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, PT II, 2021, 1525 : 546 - 566
  • [34] A Comparative Study of Machine Learning Algorithms for Predicting Weight Range of Neonate
    Adeeba, Saleem
    Banujan, Kuhaneswaran
    Kumara, B. T. G. S.
    Prasanth, Senthan
    2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 869 - 873
  • [35] A Comparative Study of Machine Learning Algorithms for Prior Prediction of UFC Fights
    Hitkul
    Aggarwal, Karmanya
    Yadav, Neha
    Dwivedy, Maheshwar
    HARMONY SEARCH AND NATURE INSPIRED OPTIMIZATION ALGORITHMS, 2019, 741 : 67 - 76
  • [36] Classification of the Insureds Using Integrated Machine Learning Algorithms: A Comparative Study
    Hanafy, Mohamed
    Ming, Ruixing
    APPLIED ARTIFICIAL INTELLIGENCE, 2022, 36 (01)
  • [37] A comparative study of selected machine learning algorithms for electrical impedance tomography
    Dziadosz, Marcin
    Mazurek, Mariusz
    Stefaniak, Barbara
    Wojcik, Dariusz
    Gauda, Konrad
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (04): : 237 - 240
  • [38] Comparative Study of Machine Learning Algorithms in Breast Cancer Prognosis and Prediction
    Ithawar, Majid
    Aslam, Naeem
    Mahboob, Rao Muhammad Mahtab
    Mirza, Mueed Ahmed
    Jahangir, Hassan
    Mughal, Muhammad Awais
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2020, 20 (08): : 125 - +
  • [39] Fall Detection Using Supervised Machine Learning Algorithms: A Comparative Study
    Zerrouki, Nabil
    Harrou, Fouzi
    Houacine, Amrane
    Sun, Ying
    PROCEEDINGS OF 2016 8TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION & CONTROL (ICMIC 2016), 2016, : 665 - 670
  • [40] Comparative Study of Several Machine Learning Algorithms for Classification of Unifloral Honeys
    Mateo, Fernando
    Tarazona, Andrea
    Maria Mateo, Eva
    FOODS, 2021, 10 (07)