A Comparative Study on Machine Learning algorithms for Knowledge Discovery

被引:1
|
作者
Suseela, Siddesh Sambasivam [1 ]
Feng, Yang [2 ]
Mao, Kezhi [3 ]
机构
[1] Nanyang Technol Univ, IHPC, A STAR, Singapore, Singapore
[2] ASTAR, IHPC, Singapore, Singapore
[3] Nanyang Technol Univ, Singapore, Singapore
关键词
Knowledge discovery; symbolic regression; Sparse regression; Machine Learning;
D O I
10.1109/ICARCV57592.2022.10004302
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For centuries, the process of formulating new knowledge from observations has driven scientific discoveries. With rapid advancements in machine learning, it is natural to question the possibility of automating knowledge discovery in the scientific field. A benchmark task for automated knowledge discovery is called symbolic regression. The task aims to predict a mathematical equation that best describes the observational data. The advancements in symbolic regression have significant potential to aid research in understanding unexplored systems' dynamics and governing properties. However, the combinatorial nature of the problem makes it an expensive and challenging problem to solve efficiently. Several types of symbolic regression algorithms exist, from genetic programming and sparse regression to deep generative models. However, no survey collates these prominent algorithms. Therefore, this paper aims to summarize key research works in symbolic regression and perform a comparative study to understand the strength and limitations of each method. Finally, we highlight the challenges in the current methods and future research directions in the application of machine learning in knowledge discovery.
引用
收藏
页码:131 / 136
页数:6
相关论文
共 50 条
  • [21] Identification of Voice Disorders: A Comparative Study of Machine Learning Algorithms
    Coelho, Sharal
    Shashirekha, Hosahalli Lakshmaiah
    SPEECH AND COMPUTER, SPECOM 2023, PT I, 2023, 14338 : 565 - 578
  • [22] Comparative Study of Machine Learning Algorithms for Twitter Sentiment Analysis
    Indulkar, Yash
    Patil, Abhijit
    2021 INTERNATIONAL CONFERENCE ON EMERGING SMART COMPUTING AND INFORMATICS (ESCI), 2021, : 295 - 299
  • [23] A Comparative Study of Machine Learning Algorithms for Financial Data Prediction
    Omar, Bencharef
    Zineb, Bousbaa
    Jofre Aida, Cortes
    Cortes Daniel, Gonzalez
    2018 INTERNATIONAL SYMPOSIUM ON ADVANCED ELECTRICAL AND COMMUNICATION TECHNOLOGIES (ISAECT), 2018,
  • [24] Deep Learning in Predicting Preterm Birth: A Comparative Study of Machine Learning Algorithms
    Zhang Fangchao
    Tong Lingling
    Shi Chen
    Zuo Rui
    Wang Liwei
    Wang Yan
    母胎医学杂志(英文), 2024, 06 (03)
  • [25] Deep Learning in Predicting Preterm Birth: A Comparative Study of Machine Learning Algorithms
    Zhang, Fangchao
    Tong, Lingling
    Shi, Chen
    Zuo, Rui
    Wang, Liwei
    Wang, Yan
    MATERNAL-FETAL MEDICINE, 2024, 6 (03) : 141 - 146
  • [26] Knowledge Discovery for Higher Education Student Retention Based on Data Mining: Machine Learning Algorithms and Case Study in Chile
    Palacios, Carlos A.
    Reyes-Suarez, Jose A.
    Bearzotti, Lorena A.
    Leiva, Victor
    Marchant, Carolina
    ENTROPY, 2021, 23 (04)
  • [27] Multimodal Machine Learning for Drug Knowledge Discovery
    Shtar, Guy
    WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2021, : 1115 - 1116
  • [28] Dynamic Sentiment Analysis Using Multiple Machine Learning Algorithms: A Comparative Knowledge Methodology
    Kaur, Manmeet
    Agrawal, Krishna Kant
    Arora, Deepak
    ADVANCES IN DATA AND INFORMATION SCIENCES, VOL 1, 2018, 38 : 273 - 286
  • [29] Coronary Heart Disease Prediction: A Comparative Study of Machine Learning Algorithms
    Hammoud, Ahmad
    Karaki, Ayman
    Tafreshi, Reza
    Abdulla, Shameel
    Wahid, Md
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2024, 15 (01) : 27 - 32
  • [30] House Price Forecasting by Implementing Machine Learning Algorithms: A Comparative Study
    Joshi, Ishan
    Mudgil, Pooja
    Bisht, Arpit
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 3, 2023, 492 : 63 - 71