Irrigation Mapping on Two Contrasted Climatic Contexts Using Sentinel-1 and Sentinel-2 Data

被引:17
|
作者
Elwan, Ehsan [1 ]
Le Page, Michel [1 ]
Jarlan, Lionel [1 ]
Baghdadi, Nicolas [2 ]
Brocca, Luca [3 ]
Modanesi, Sara [3 ]
Dari, Jacopo [3 ,4 ]
Quintana Segui, Pere [5 ]
Zribi, Mehrez [1 ]
机构
[1] Univ Toulouse, UPS, CNRS, CESBIO,CNES,INRAE,IRD, 18 Ave Edouard Belin, F-31401 Toulouse 9, France
[2] Univ Montpellier, AgroParisTech, CNRS, CIRAD,INRAE,TETIS, F-34090 Montpellier, France
[3] CNR, Natl Res Council, Res Inst Geohydrol Protect, Via Madonna Alta 126, I-06128 Perugia, Italy
[4] Univ Perugia, Dept Civil & Environm Engn, Via G Duranti 93, I-06125 Perugia, Italy
[5] Ramon Llull Univ, CSIC, Observ Ebre OE, Roquetes 43520, Spain
关键词
Sentinel-1; Sentinel-2; irrigation map; support vector machine; SOIL-MOISTURE; WATER; AGRICULTURE; LANDSAT; AREAS; MODIS;
D O I
10.3390/w14050804
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study aims to propose an operational approach to map irrigated areas based on the synergy of Sentinel-1 (S1) and Sentinel-2 (S2) data. An application is proposed at two study sites in Europe-in Spain and in Italy-with two climatic contexts (semiarid and humid, respectively), with the objective of proving the essential role of multi-site training for a robust application of the proposed methodologies. Several classifiers are proposed to separate irrigated and rainfed areas. They are based on statistical variables from Sentinel-1 and Sentinel-2 time series data at the agricultural field scale, as well as on the contrasted behavior between the field scale and the 5 km surroundings. The support vector machine (SVM) classification approach was tested with different options to evaluate the robustness of the proposed methodologies. The optimal number of metrics found is five. These metrics illustrate the importance of optical/radar synergy and the consideration of multi-scale spatial information. The highest accuracy of the classifications, approximately equal to 85%, is based on training dataset with mixed reference fields from the two study sites. In addition, the accuracy is consistent at the two study sites. These results confirm the potential of the proposed approaches towards the most general use on sites with different climatic and agricultural contexts.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Integrating GEDI, Sentinel-2, and Sentinel-1 imagery for tree crops mapping
    Adrah, Esmaeel
    Wong, Jesse Pan
    Yin, He
    REMOTE SENSING OF ENVIRONMENT, 2025, 319
  • [42] MAPPING FOREST VERTICAL STRUCTURE ATTRIBUTES WITH GEDI, SENTINEL-1, AND SENTINEL-2
    Tsutsumida, Narumasa
    Kato, Akira
    Osawa, Takeshi
    Doi, Hideyuki
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 538 - 541
  • [43] IRRIGATION MAPPING USING SENTINEL-1 TIME SERIES
    Bazzi, Hassan
    Baghdadi, Nicolas
    Ienco, Dino
    Zribi, Mehrez
    Belhouchette, Hatem
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4711 - 4714
  • [44] Classification scheme for mapping wetland herbaceous plant communities using time series Sentinel-1 and Sentinel-2 data
    Zhang L.
    Luo W.
    Zhang H.
    Yin X.
    Li B.
    National Remote Sensing Bulletin, 2023, 27 (06) : 6 - 19
  • [45] Object-based machine learning approach for soybean mapping using temporal sentinel-1/sentinel-2 data
    Kumari, Mamta
    Pandey, Varun
    Choudhary, Karun Kumar
    Murthy, C. S.
    GEOCARTO INTERNATIONAL, 2022, 37 (23) : 6848 - 6866
  • [46] Mapping tree species diversity in temperate montane forests using Sentinel-1 and Sentinel-2 imagery and topography data
    Liu, Xiang
    Frey, Julian
    Munteanu, Catalina
    Still, Nicole
    Koch, Barbara
    REMOTE SENSING OF ENVIRONMENT, 2023, 292
  • [47] Random forest classifications for landuse mapping to assess rapid flood damage using Sentinel-1 and Sentinel-2 data
    Billah, Maruf
    Islam, A. K. M. Saiful
    Bin Mamoon, Wasif
    Rahman, Mohammad Rezaur
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2023, 30
  • [48] Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at 100 m Resolution
    Gao, Qi
    Zribi, Mehrez
    Escorihuela, Maria Jose
    Baghdadi, Nicolas
    SENSORS, 2017, 17 (09):
  • [49] Sentinel-1 and Sentinel-2 Data for Savannah Land Cover Mapping: Optimising the Combination of Sensors and Seasons
    Borges, Joana
    Higginbottom, Thomas P.
    Symeonakis, Elias
    Jones, Martin
    REMOTE SENSING, 2020, 12 (23) : 1 - 21
  • [50] Mediterranean Shrublands Biomass Estimation Using Sentinel-1 and Sentinel-2
    Chang, Jisung
    Shoshany, Maxim
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5300 - 5303